

Towards More Practical Time-Driven Cache Attacks

Raphael Spreitzer (Graz University of Technology, Austria) Benoît Gérard (DGA-MI, France)

Heraklion, 30th June 2014

Introduction to Cache Attacks

- Advanced Encryption Standard (AES)
 - Four round transformations
 - Software implementations employ T-tables
 - $\mathbf{T}[\mathbf{s}_i = \mathbf{p}_i \oplus \mathbf{k}_i]$
- CPU caches
 - Data cannot be accessed in constant time
- ${\scriptstyle \bullet} \Rightarrow$ Cache attacks exploit these timing variations

Introduction

Bernstein's Cache-Timing Attack [Ber05]

- Study phase
 - Encrypt P under a known key K
- Attack phase
 - Encrypt $\widetilde{\textbf{P}}$ under an unknown key $\widetilde{\textbf{K}}$
- Correlation phase
 - Similar timing profile if pairs satisfy

$$\widetilde{\mathbf{p}}_i \oplus \widetilde{\mathbf{k}}_i = \mathbf{p}_i \oplus \mathbf{k}_i$$
 $\widetilde{\mathbf{k}}_i = \mathbf{p}_i \oplus \mathbf{k}_i \oplus \widetilde{\mathbf{p}}_i$

Key-search phase

Recent Investigations and Motivation

- ARM processors: still \sim 60 bits to be search exhaustively [WHS12, SP13]
- How to improve the attack?
- Divide and conquer
 - Divide: gather leaking information
 - Conquer: exploit the gathered information
- Improve the attack by focusing on both phases

Divide Part Study phase & attack phase

Attacking different key-chunk sizes Minimum timing information [AE13]

Attacking Different Key-Chunk Sizes (1/2)

Bernstein attacked single bytes

• Attack 1-byte chunks: $n_{kc} = 16$, $s_{kc} = 256$

Different key-chunk sizes

- Attack 4-bit chunks: $n_{kc} = 32$, $s_{kc} = 16$
- Attack 2-byte chunks: $n_{kc} = 8$, $s_{kc} = 256^2$
- Attacking larger key chunks should reduce the noise

Attacking Different Key-Chunk Sizes (2/2) **Pitfalls?**

- Memory requirements (8-byte elements t[n_{kc}][s_{kc}])
 - Attacking 1-byte chunks: 32 KB
 - Attacking 2-byte chunks: 4 MB
 - Attacking 4-byte chunks: 128 GB
- Number of measurement samples
 - Let $N = 2^{28}$ be the number of encrypted plaintexts
 - Each possible value *b* of a specific chunk is encrypted $\sim \frac{N}{s_{kc}}$
 - 1-byte chunks: $\sim 10^6$
 - 2-byte chunks: 4096

Practical Results (1/2)

Attacking 1-byte chunks on Samsung Galaxy SII

Practical Results (2/2)

Attacking 2-byte chunks on Samsung Galaxy SII

Divide Part Study phase & attack phase

Attacking different key-chunk sizes Minimum timing information [AE13]

Minimum Timing Information [AE13]

- Gather minimum encryption time
- Only noise increases the encryption time
- Improvement on Pentium processors

Our observations

- ${\scriptstyle \bullet}$ \Rightarrow cache misses also increase the encryption time
- Misses potential useful information
- Does not work for ARM processors

Conquer part Correlation phase & key-search phase

How to recover the full key?

Recovering the Full Key from Sub Keys

Threshold Approach [Ber05]

- Fix threshold
- Consider potential key bytes above this threshold
- Iterate over all sets of sub keys
- Complexity determined by product of cardinalities
- Disadvantages
 - Key might not be found
 - Ordering of sub keys is not exploited

Recovering the Full Key from Sub Keys

Optimal Key-Enumeration Approach [VCGRS12]

- Combination function to compute "global score"
- Test full keys in decreasing order of the score
- Improvement?

Run	Threshold	Optimal enumeration
1	64 bits	36.6 – 44.9 bits
2	74 bits	36.5 – 45.6 bits

Practical Results

Rank evolution

Conclusion

- Investigated potential improvements
 - Divide part
 - Best choice on mobile devices: attack 1-byte chunks
 - Minimum encryption time does not work
 - Conquer part
 - Optimal key-enumeration algorithm
- ⇒ optimal key-enumeration algorithm significantly reduces the key-search complexity

Bibliography I

[AE13]	Hassan Aly and Mohammed ElGayyar.		
	Attacking AES Using Bernstein's Attack on Modern Processors.		
	In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors, <i>AFRICACRYPT</i> , volume 7918 of <i>Lecture Notes in Computer Science</i> , pages 127–139. Springer, 2013.		
[Ber05]	Daniel J. Bernstein.		
	Cache-timing attacks on AES.		
	Available online at http://cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.		
[SP13]	Raphael Spreitzer and Thomas Plos.		
	On the Applicability of Time-Driven Cache Attacks on Mobile Devices.		
	In Javier Lopez, Xinyi Huang, and Ravi Sandhu, editors, Network and System Security, volume 7873 of Lecture Notes in Computer Science, pages 656–662. Springer Berlin Heidelberg, 2013.		

Bibliography II

[VCGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-Xavier Standaert.

An Optimal Key Enumeration Algorithm and Its Application to Side-Channel Attacks.

In Lars R. Knudsen and Huapeng Wu, editors, *Selected Areas in Cryptography*, volume 7707 of *LNCS*, pages 390–406. Springer, 2012.

[WHS12] Michael Weiß, Benedikt Heinz, and Frederic Stumpf.

A Cache Timing Attack on AES in Virtualization Environments.

In Angelos D. Keromytis, editor, *Financial Cryptography*, volume 7397 of *LNCS*, pages 314–328. Springer, 2012.