PIN Skimming: Exploiting the Ambient-Light Sensor in Mobile Devices

Raphael Spreitzer
IAIK, Graz University of Technology, Austria

SPSM @ ACM CCS 2014, Scottsdale, Arizona, 7th November 2014

www.iaik.tugraz.at
Outline

- Introduction & motivation
- Ambient-light sensor
- Attack scenario
- Evaluation of results
- Mitigation techniques
- Conclusion
Introduction & Motivation

- Wide-spread usage of mobile devices
 - Entertainment applications
 - Business applications (e.g., banking)
- Protection of private information
- Features/sensors that can be exploited
 - Camera, sound, motion sensors, ...
 - Less obvious: ambient-light sensor
Ambient-Light Sensor

1) Front camera

2) Ambient-light sensor
 - Intensity of surrounding illumination
 - Adapt screen brightness
 - Android Sensor API (∼750 Hz)
- Prompt user to enter a random 4-digit PIN
RGBW Sensor

- No API support → read virtual filesystem directly
Observation

- **Tilts and turns** during smartphone operation
Assumptions

- User is holding the device in his hands
- PIN is entered on a keypad rather than a QWERTY keyboard
- Light sensor faces sufficiently large variance of ambient light
- Training data and test data is collected in the same environment
Attack Scenario

Training phase
- A game to collect the training data (labeled data)
- Learn a specific set of PINs

Attack phase
- Trick user into starting the application to be attacked
- Collect sensor values in the background
- Infer PIN by means of machine learning

Security implications
- Samsung KNOX [SA13]
- BYOD
- Attack “business” world from “private” world
Setup

Unconstrained environments (rooms)

- Uniformly lit via tube lights
- Standard ceiling lamp
- Window as the only light source
 - Even considered different daytimes
 - Diffuse light conditions

Users were asked not to walk around

- Compliant with our attack scenario

We did not insist on a specific input method
Correctly Classified PINs after Guessing

- Based on a set of 50 learned PINs

![Graph showing the rate of correctly classified PINs against the number of guesses for Discriminant analysis (L), Discriminant analysis (LRGBW), and Random guessing. The graph illustrates the performance improvement with more guesses.]
Comparison with Related Work

Attacks targeting a set of 50 PINs

<table>
<thead>
<tr>
<th>Sensor</th>
<th>[ASBS12]</th>
<th>[SA13]</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissions</td>
<td>Accelerometer</td>
<td>Camera</td>
<td>Ambient-light sensor</td>
</tr>
<tr>
<td>Input method</td>
<td>Internet</td>
<td>Camera, Internet</td>
<td>Internet</td>
</tr>
<tr>
<td>Accuracy</td>
<td>No constraints</td>
<td>Thumb of holding hand</td>
<td>No constraints</td>
</tr>
<tr>
<td></td>
<td>43% within 5 guesses</td>
<td>50% within 5 guesses</td>
<td>65% within 5 guesses</td>
</tr>
</tbody>
</table>

Our attack works at least as good as related attacks
Countermeasures

UI and API modifications

- Disable sensors during “sensitive” input? [ASBS12]
- Varying keyboard layout [OHD+12]
- \textbf{Restrict access} to OS

Permission model & application analysis

- OS developers need to deal with this problem
- Install-time \textit{warning} [FEF+12, FHE+12]
- Scan apps during the installation

⇒ \textbf{Raise user awareness}
Conclusion

Summary

- Ambient-light sensor leaks sensitive information
- No permission required
- Developed a proof-of-concept application

Future work

- Detailed comparison of sensor-based attacks
- Combination of sensors
PIN Skimming: Exploiting the Ambient-Light Sensor in Mobile Devices

Raphael Spreitzer
IAIK, Graz University of Technology, Austria

SPSM @ ACM CCS 2014, Scottsdale, Arizona, 7th November 2014
Bibliography I

Practicality of Accelerometer Side Channels on Smartphones.

How to Ask for Permission.
In USENIX Conference on Hot Topics in Security (HotSec), 2012.

Android Permissions: User Attention, Comprehension, and Behavior.

[OHD+12] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang.
ACCessory: Password Inference using Accelerometers on Smartphones.
Bibliography II

[SA13] Laurent Simon and Ross Anderson.
PIN Skimmer: Inferring PINs Through The Camera and Microphone.