

Adding Controllable Linkability to Pairing-Based Group Signatures For Free

Daniel Slamanig • Raphael Spreitzer • Thomas Unterluggauer IAIK, Graz University of Technology, Austria

ISC 2014, Hong Kong, 12th October 2014

Outline

- Group signature schemes
- Controllable linkability
- Basic building blocks
 - Sign-and-encrypt-and-prove paradigm
 - Trapdoor equality test for public-key encryption
- Our construction
- Take home and open questions

Group Signature Scheme

Open either for all messages or message-dependent [SEH+12]

Slamanig, Spreitzer, Unterluggauer

Controllable Linkability [HLC+11, HLC+13]

Motivation

- Data mining
- Public transport system

Controllable Linkability

• Proposed in [HLC+11] and [HLC+13]

- Security model based on [BSZ05]
- Two proprietary constructions (BBS⁺ variants)
- Adds overhead to the schemes
- Would be nice to have a generic construction
 - We propose one for pairing-based GSSs based on sign-and-encrypt-and-prove paradigm
 - Comes at no additional costs
 - Therefore introduce a primitive (AoN-PKEET*)

Sign-and-Encrypt-and-Prove (SEP)

Ingredients

- Signature scheme $DS = (KeyGen_s, Sign, Vrfy)$
- Encryption scheme $\mathcal{AE} = (KeyGen_e, Enc, Dec)$
- Signatures of Knowledge (SPK), OW function $f(\cdot)$

Keys

- gpk: (pk_e, pk_s) mik: sk_s mok: sk_e Joining
 - User secret *x_i*
 - Membership certificate: **cert** \leftarrow Sign(sk_s, $f(x_i)$)

Sign-and-Encrypt-and-Prove (SEP)

Group signature

• $\sigma = (T, \pi)$

With ciphertext $T \leftarrow \text{Enc}(\text{pk}_e, X_i)$ and SPK π

 $\pi \leftarrow \mathsf{SPK}\{(x_i, \mathsf{cert}) : \mathsf{cert} = \mathsf{Sign}(\mathsf{sk}_s, f(x_i)) \land$ $T = \mathsf{Enc}(\mathsf{pk}_e, X_i)\}(M)$ where X_i is $q(x_i)$ for some OW function $q(\cdot)$ or cert

Controllable Linkability - Basic Idea

Given two signatures $\sigma = (T, \pi)$ and $\sigma' = (T', \pi')$ we have

- $T = \text{Enc}(\text{pk}_e, X_i)$ and $T' = \text{Enc}(\text{pk}_e, X_j)$
- Linker should be able to determine whether *i* = *j* without learning *X_i* and *X_j*

Trapdoor Equality Test for Public-Key Encryption

- Comparing ciphertexts without learning plaintexts
- Existing primitives such as PKEET or All-Or-Nothing (AoN) PKEET are not suitable

Modified AoN-PKEET (AoN-PKEET*)

A conventional public key encryption scheme (KeyGen_e, Enc, Dec) augmented by algorithms \mbox{Aut} and \mbox{Com}

- Aut(sk): Takes a private key sk and outputs a trapdoor tk
- Com(c,c',tk): Takes two ciphertexts c and c' for messages m and m' produced under pk, and a trapdoor tk (from sk), and outputs true if m = m' or false otherwise

Modified AoN-PKEET (AoN-PKEET*)

- Compatible with zero-knowledge proofs of knowledge about plaintexts
 - Usable with GSSs following the SEP
- OW-CPA against trapdoor holders
 - Trapdoor holder cannot eff. guess the plaintext
- IND-CPA/IND-CCA against outsiders
 - Security provided by the encryption scheme

Example: ElGamal (XDH)

ElGamal in \mathbb{G}_1 of prime order p (DDH hard) and pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

• KeyGen $_e$: $sk \leftarrow \xi \in \mathbb{Z}_p^*$ and $\mathsf{pk} \leftarrow h = g^{\xi}$

• Enc: $(T_1, T_2) \leftarrow (g^{\alpha}, m \cdot h^{\alpha})$ for a random $\alpha \in \mathbb{Z}_p^*$

- Dec: $m \leftarrow T_2/(T_1^{\xi})$
- Aut: tk \leftarrow $(r, t = r^{\xi})$ for a random $r \in \mathbb{G}_2$
- Com: For two ciphertexts $(T_1, T_2) = (g^{\alpha}, m \cdot h^{\alpha})$ and $(T'_1, T'_2) = (g^{\alpha'}, m' \cdot h^{\alpha'})$ and tk = (r, t) check: $e(m, r) = \frac{e(T_2, r)}{e(T_1, t)} \stackrel{?}{=} \frac{e(T'_2, r)}{e(T'_1, t)} = e(m', r)$
- Other relevant schemes mentioned in the paper

PB-GSSs with Controllable Linkability

Replace the used public key encryption scheme with its AoN-PKEET* version

- In setup compute mlk ← Aut(mok)
- Link(gpk, *M*, σ, *M'*, σ', mlk):
 - Verify both signatures $\sigma = (T, \pi)$ and $\sigma' = (T', \pi')$ and abort if at least one check fails
 - Otherwise, the algorithm extracts the ciphertexts T and T' from σ and σ' and runs Com(T, T', mlk) and outputs whatever Com outputs

Security

[HLC+11] extended properties by BSZ

- LO-linkability: Linking key only useful for linking not opening
- JP-Unforgeability: Linking key cannot be used for generating a Judge proof
- E-linkability: Colluding users should not be able to generate signatures that do not link correctly

Theorem

If AoN-PKEET^{*} is secure (includes OW-CPA for **cert**), PB-GSS is secure, then the generic transformation yields a secure PB-GSS with controllable linkability.

Take Home & Open Questions

- Controllable linkability for PB-GSSs following SEP
- Generic construction from AoN-PKEET*
 - Trapdoor equality test for public-key encryption
- Comes at no additional costs
- Future directions
 - Investigation in stronger security models [SSE⁺12]
 - (Publicly) verifiable proof of linking

Adding Controllable Linkability to Pairing-Based Group Signatures For Free

Daniel Slamanig • Raphael Spreitzer • Thomas Unterluggauer IAIK, Graz University of Technology, Austria

ISC 2014, Hong Kong, 12th October 2014

Bibliography I

- [BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of Group Signatures: The Case of Dynamic Groups. In CT-RSA, pages 136–153, 2005.
- [HLC⁺11] Jung Yeon Hwang, Sokjoon Lee, Byung-Ho Chung, Hyun Sook Cho, and DaeHun Nyang. Short Group Signatures with Controllable Linkability. In *LightSec*, pages 44–52, March 2011.
- [HLC⁺13] Jung Yeon Hwang, Sokjoon Lee, Byung-Ho Chung, Hyun Sook Cho, and DaeHun Nyang. Group signatures with controllable linkability for dynamic membership. Int. Sci., 222:761–778, 2013.
- [SEH⁺12] Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, Takahiro Matsuda, and Kazumasa Omote.
 Group Signatures with Message-Dependent Opening.
 In *Pairing*, volume 7708 of *LNCS*, pages 270–294. Springer, 2012.

Bibliography II

[SSE⁺12] Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and Kazuo Ohta. On the Security of Dynamic Group Signatures: Preventing Signature Hijacking. In Public Key Cryptography, volume 7293 of LNCS, pages 715–732. Springer, 2012.