
SCAnDroid: Automated Side-Channel Analysis of Android APIs
Raphael Spreitzer

Graz University of Technology
Gerald Palfinger

Graz University of Technology
Stefan Mangard

Graz University of Technology

ABSTRACT
Although the Android system has been continuously hardened
against side-channel attacks, there are still plenty of APIs available
that can be exploited. However, most side-channel analyses in the
literature consider specifically chosen APIs (or resources) in the
Android framework, after a manual analysis of APIs for possible
information leaks has been performed. Such a manual analysis
is a tedious, time consuming, and error-prone task, meaning that
information leaks tend to be overlooked.

To overcome this tedious task, we introduce SCAnDroid, a
framework that automatically profiles the Java-based Android API
for possible information leaks. Events of interest, such as website
launches, Google Maps queries, or application starts, are triggered
automatically, and while these events are being triggered, the Java-
based Android API is analyzed for possible information leaks that
allow inferring these events later on. To assess the Android API for
information leaks, SCAnDroid relies on dynamic time warping.

By applying SCAnDroid on Android 8 (Android Oreo), we iden-
tified several Android APIs that allow inferring website launches,
Google Maps queries, and application starts. The triggered events
are by no means exhaustive but have been chosen to demonstrate
the broad applicability of SCAnDroid. Among the automatically
identified information leaks are, for example, the java.io.File
API, the android.os.storage.StorageManager API, and several
methods within the android.net.TrafficStatsAPI. Thereby, we
identify the first side-channel leaks in the Android API on Android 8
(Android Oreo).

KEYWORDS
Android API; automatic analysis; side-channel analysis; Java API

ACM Reference Format:
Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard. 2018. SCAnDroid:
Automated Side-Channel Analysis of Android APIs. InWiSec ’18: Proceedings
of the 11th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, June 18–20, 2018, Stockholm, Sweden. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3212480.3212506

1 INTRODUCTION
The exploitation of unintended information leaks on mobile de-
vices, denoted as side-channel analysis, represents a vivid area
of research. Mobile devices, in particular, Android-based devices,
represent a popular target since these devices store and process
sensitive information. Among the different types of side-channel

WiSec ’18, June 18–20, 2018, Stockholm, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published inWiSec ’18: Proceedings
of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks,
June 18–20, 2018, Stockholm, Sweden, https://doi.org/10.1145/3212480.3212506.

attacks [29], software-based side-channel attacks constitute a pow-
erful attack technique since these attacks can be conducted with-
out the attacker being physically present with the targeted de-
vice, and attack applications can be spread easily via established
app markets such as Google Play. In case of software-based side-
channel attacks, sensitive information unintentionally leaks to
untrusted third-party applications (apps) via side channels. Such
software-based side-channel attacks on mobile devices range from
microarchitectural attacks [14, 26, 30, 31, 36], via sensor-based at-
tacks [6, 7, 11, 16, 20, 22, 23, 25], to attacks exploiting the Android
API and procfs resources [8, 10, 12, 13, 17, 24, 27, 28].

Nevertheless, so far most side-channel analyses focused on the
exploitation of manually chosen resources, such as sensors, or the
exploitation of manually selected information leaks via specific
resources within the procfs or the Android API. Only recently, a
framework denoted as ProcHarvester [28]—that allows analyzing
procfs resources for possible information leaks automatically—has
been published. However, a similar approach for the Android frame-
work (the Java-based Android API) is still missing but would be
beneficial to complement the automatic assessment of information
leaked through the Android API. Especially in light of the steadily
increasing number of Android APIs introduced with every new
API level, such automatic frameworks are of particular importance.
In contrast to ProcHarvester [28], where the side-channel assess-
ment is based on numerical information read from procfs resources,
assessing information leaks in the Android API requires the con-
struction of objects and the invocation ofmethodswith semantically
correct parameters. Hence, the questions that we are addressing
in this paper are: (1) how do we automatically identify information
leaks in the Android API?, and (2) given specific events of interest,
what information can be exploited to infer these events? To answer
these questions, we need to address the following challenges.
(1) List of APIs. A selection of APIs, which are to be profiled for

a specific Android API level, is required.
Approach: We parse the official package index of the Android
API to extract classes, methods, and corresponding parameters.

(2) Valid Objects and Parameters. Valid objects must be created
by passing meaningful parameters to constructors, and method
calls require semantically meaningful parameters.
Approach: We aim for a mostly automated approach to select
parameters for meaningful method calls, including object cre-
ation. Additionally, specific parameters can also be easily pre-
configured to ensure semantically correct parameter values.

(3) Profiling Framework. The profiling of dedicated events should
be done automatically, i.e., the triggering of events as well as
the profiling of methods on the mobile devices.
Approach: Based on the ProcHarvester framework [28], which
in turn relies on the Android Debug Bridge (ADB), we automat-
ically trigger events and command the profiling phase.

(4) Analysis Framework. A framework to automatically analyze
gathered information for possible side-channel leaks is required.

https://doi.org/10.1145/3212480.3212506
https://doi.org/10.1145/3212480.3212506

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard

Approach: Based on the ProcHarvester framework [28], which
relies on dynamic time warping, we analyze the gathered infor-
mation to assess possible information leaks.
By solving these challenges and by extending ProcHarvester [28],

we come up with a framework denoted SCAnDroid that allows
assessing information leaks within the Java-based Android API
automatically. Thereby, we overcome the tedious task of manually
analyzing the Android framework for side-channel leaks. Over-
all, we positively answer the motivating question: The automated
profiling of the Android API framework for side-channel leaks is pos-
sible. The application of SCAnDroid on Android 8 (Android Oreo)
revealed several new side-channel leaks.1

Contributions. The contributions of this paper are as follows:

(1) We propose a framework denoted SCAnDroid to assess
side-channel leaks in the Android framework automatically.

(2) We demonstrate the applicability of SCAnDroid by auto-
matically profiling various events of interest, such as website
launches, Google Maps searches, and application starts.

(3) Based on the above-outlined events of interest, we identify
new side-channel leaks within the Android API.

Outline. In Section 2, we discuss background information and re-
lated work. In Section 3, we introduce the SCAnDroid framework.
In Section 4, we showcase SCAnDroid by automatically assess-
ing information leaks for various events. In Section 5, we discuss
limitations and future work. In Section 6, we conclude this work.

2 BACKGROUND
Side-Channel Attacks. Software-based side-channel attacks on

mobile devices exploit contention for shared resources, e.g., con-
tention for CPU caches in case of microarchitectural attacks [14, 26,
30, 31, 36], specific features or resources of the device, e.g., sensors in
case of sensor-based attacks [6, 7, 16, 18, 20, 22, 23, 25, 33], or the An-
droid Framework [27, 34, 37] and the procfs [8, 10, 12, 17, 24, 27, 28].
For a comprehensive overview about side-channel attacks on mo-
bile devices we refer to [29].

In this work, we are particularly interested in side-channel at-
tacks on the Java-based Android framework level. Among these
attacks are, for example, the work of Zhou et al. [37], who exploited
per-process network traffic statistics to infer activities within Twit-
ter, WebMD, and Yahoo! Finance. Zhang et al. [34] exploited per-
process traffic statistics of a surveillance app that interacts with a
surveillance video camera to infer when a user’s home is empty.
Spreitzer et al. [27] exploited per-process network statistics of
browsers to infer visited websites. In response to these attacks, the
TrafficStats.getUid[R|T]xBytes(<uid>) API has been hard-
ened and cannot be queried anymore for network statistics of other
processes since Android 7 (Android Nougat) [5]. Hence, these at-
tacks do notwork onmore recent Android versions, such as Android
7 (Android Nougat) and Android 8 (Android Oreo), anymore. How-
ever, the question arises whether there exist other Java interfaces
in the Android framework that enable similar attacks.

1We responsibly disclosed our findings to Google. The SCAnDroid framework is
available at: https://github.com/IAIK/SCAnDroid.

Automated Analysis Frameworks. While the above discussed
investigations consider the exploitation of manually chosen re-
sources, approaches towards a more systematic side-channel eval-
uation are quite scarce. Only recently, the need for an automated
analysis framework that allows identifying side-channel leaks in the
procfs on Android-based mobile devices has been motivated [28].
Currently, ProcHarvester [28] is the only framework enabling an au-
tomated analysis of procfs information leaks on Android.While ded-
icated events of interest are being triggered on the device, ProcHar-
vester automatically reads numerical values from the procfs. The
gathered values are then analyzed using machine-learning ap-
proaches to identify possible information leaks in these resources.

A similar framework to assess possible information leaks in
the Android API itself does not exist. Compared to ProcHarvester,
a significant challenge of such a framework is the invocation of
constructors and methods with valid parameters.

Android Permission System. Specific features and resources
on Android are protected by dedicated permissions. For resources
outside of Android apps that are considered as being non-sensitive,
so-called normal permissions [4] are required. Although these per-
missions need to be specified in the Android Manifest.xml, these
permissions are granted to any application without requiring the
user’s consent. Hence, apps relying on normal permissions only
are considered as zero-permission apps. Among these normal per-
missions is, for example, the INTERNET permission.

APIs and resources that are considered as sensitive require so-
called dangerous permissions or even system-level permissions [4].
These permissions also need to be specified in the Android Mani-
fest.xml, but unlike normal permissions, these permissions need to
be explicitly granted by the user. In case of dangerous permissions,
the user needs to grant these permissions through a pop-up dialog.
System-level permissions need to be explicitly granted for specific
apps via the settings menu and, thus, also require user consent.

Threat Model. The specific type of side-channel attacks that
we are interested in are software-based side-channel attacks [29],
and in particular attacks on the Java-based Android API. These
attacks typically consist of a training phase and an attack phase.
In the training phase, the attacker models events of interest, e.g.,
the attacker builds templates for information leaks related to secret
events. In the attack phase, the attacker distributes a malicious app,
which in general does not require any permission (only normal
permissions that are automatically granted without the user’s con-
sent). After the targeted user installed this malicious app, the app
observes the previously identified information leaks (that can be
accessed without any permission) and infers the corresponding
events. SCAnDroid automatically identifies information leaks that
can be exploited by such software-based side-channel attacks.

3 SCANDROID
SCAnDroid allows profiling events of interest in order to iden-
tify information leaks within the Android framework. Similar to
ProcHarvester [28], SCAnDroid builds on the concept of template
attacks, a conventional and powerful attack technique for side-
channel analyses. In the first phase, (possibly) leaking information
is modeled as templates for events of interest. In the second phase, it

https://github.com/IAIK/SCAnDroid

SCAnDroid: Automated Side-Channel Analysis of Android APIs WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Android Developers Website

Package Index
.
.
.

SCAn-
Droid

(1) Fetch packages

Backend

Parser Analyzer Controller

(2) Parse

(3) Trigger event

(4) Log(5) Fetch data
(6) Analyze

Figure 1: Basic design of SCAnDroid.

is tested whether or not the established models (templates) allow to
infer the corresponding events based on the observed information
leaks. Such template attacks enable automatic analysis since no
background knowledge about the leaking information is required.

Figure 1 illustrates the basic design of SCAnDroid. In the first
step, the Parser component fetches a list of available constructors,
and methods from the Android Developers website [3], and parses
this information in the second step to extract methods to be profiled.
Furthermore, it extracts all permissions, including normal, danger-
ous, and system-level permissions. In the third step, the Controller
component commands the smartphone to trigger events of inter-
est, and the Controller also interacts with the SCAnDroid logging
app on the smartphone. The SCAnDroid app on the smartphone
relies on Java Reflections [15] to create objects according to the
information retrieved from the Parser component and logs the cor-
responding methods in the fourth step. After the profiling has been
finished, the Controller component fetches the gathered informa-
tion in the fifth step. Finally, the Analyzer component analyzes the
gathered information to identify information leaks in the sixth step.

The Analyzer and the Controller component are based on the
ProcHarvester [28] framework. Subsequently, the working principle
of each component is discussed in more detail.

3.1 Backend
Parser Component. Although Java Reflections allow to exam-

ine the Java API during runtime and, thus, to retrieve a list of
available classes and methods at runtime, the semantics of param-
eter names cannot be retrieved dynamically on the device. That
is, only the type of a parameter and a generic name are available,
e.g., int method(int arg0), but the parameter name (which often
reflects the meaning and purpose of the parameter) is not available.
For example, in contrast to an abstract parameter name arg0, the
meaning of long time or int uid can be inferred easily. Hence,
we parse the Android Developer documentation [3] to establish
a list of constructors and methods, including the corresponding
parameters, i.e., their type and name information. Based on this list,
we extract methods of interest with a specific prefix. The method
prefixes that are currently being considered as relevant are: get,
has, is, and query. We focus on these prefixes since so-called ac-
cessor methods—used to access encapsulated member variables in
object-oriented programming languages such as Java—are typically
prefixed with these keywords.

Furthermore, the parser component extracts all permissions,
which allow us to analyze information leaks according to the three

permission groups: (1) zero-permission apps, (2) dangerous permis-
sion apps, and (3) system-level permission apps [4]. Of particular
interest in the context of software-based side-channel attacks are
information leaks that can be exploited by zero-permission apps,
i.e., apps that only require normal permissions.

Controller Component. The Controller component interacts
with the SCAnDroid app on the smartphone to command the
profiling via the Android Debug Bridge (ADB) [1], e.g., to start
and stop the logging process on the device. Furthermore, the con-
troller programmatically triggers events of interest on the con-
nected smartphone. Currently, SCAnDroid supports triggering
website launches, Google Maps search queries, and application
starts, but SCAnDroid can be easily extended to support further
events. The list of events is by no means exhaustive. It is only in-
tended to demonstrate the working principle of SCAnDroid. After
all events of interest have been triggered, the controller fetches the
gathered information for further analysis.

Analyzer Component. The time series gathered for onemethod
and one triggered event forms a so-called trace, and the Analyzer
component analyzes these time series using machine learning.
Therefore, it relies on dynamic time warping (DTW),2 which aims
to find a warping path with minimal distance between two time
series, and the Python framework scikit-learn [21]. The appealing
benefit of dynamic time warping is that it allows to compare time
series of different lengths, and also to identify similarities in time se-
ries that vary in speed. Thus, DTW identifies similarities even if the
information is misaligned, stretched, or compressed (cf. [19, 32]).

Before the actual processing, all traces are normalized by sub-
tracting the mean. All traces are combined in the so-called training
dataT = {(ei ,ti)}, which holds tuples of events (labels) ei and their
corresponding time series ti . To evaluate whether a specific re-
source leaks information, we rely on k-fold cross validation. Hence,
we split the training data T = {(ei ,ti)} into k folds, take each fold
Tf = {(ei ,ti)} (one at a time) and compute the warping paths be-
tween all tuples in this fold and all remaining tuples in the training
dataT \Tf . Let us denote the tuple with the minimal warping path
between ti and tj as (ej ,tj). If ei equals ej , then the event has been
inferred correctly. The ratio of correctly inferred events and the
total number of traces in the current foldTf indicates the inference
accuracy, which represents a metric for information leakage. The
higher the inference accuracy, the more accurate events can be

2https://github.com/honeyext/cdtw

https://github.com/honeyext/cdtw

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard

inferred and, thus the more information leaks. To obtain a robust
inference accuracy, we average the resulting inference accuracies
over all folds, which is the usual approach of k-fold cross validation.
We consider an API to leak information if the inference accuracy is
better than randomly guessing the corresponding event.

Although we also tried to automatically extract dedicated fea-
tures from the time series using tsfresh [9], and to train (more
sophisticated) supervised classifiers, the classification results were
not that promising. In our experiments, DTW seems to yield the
best results in terms of an automated information leakage analysis.

3.2 Smartphone Service
SCAnDroid App. The profiling of methods of interest is done

in an Android app (a background service) on the mobile device or an
emulator, similar to the ProcHarvester [28] framework. Compared
to ProcHarvester, the actual profiling, however, requires more engi-
neering effort and significantly more pre-processing since SCAn-
Droid needs to create objects and to invoke methods dynamically,
instead of reading numerical information from procfs resources.

Listing 1 indicates the approach to inspect Java APIs during run-
time. More specifically, Java Reflections allow inspecting available
packages as well as classes. For each class, Java Reflections further
allow retrieving constructors, to create objects, as well as to inspect
and invoke methods on these objects. Inspecting the full Android
API using Java Reflections, however, requires a significant amount
of information (e.g., about classes, constructors, methods, and their
corresponding parameters). Thus, inspecting the whole API at once
is a memory intensive task, which requires more RAM than what
might be available on today’s mobile devices.

Listing 1: Inspecting Java APIs using Java Reflections.
/ / For a l l a v a i l a b l e packages and a l l a v a i l a b l e c l a s s e s
C l a s s c = C l a s s . forName (" and ro id . . . ") ;
Con s t r u c t o r [] c t o r s = c . g e tD e c l a r e dCon s t r u c t o r s () ;
/ / Get t ype s o f pa r ame t e r s
for (Con s t r u c t o r c t o r : c t o r s) {

C la s s <? >[] pa rame te r s = c t o r . ge tPa ramete rTypes () ;
/ / C r ea t e paramete r o b j e c t s r e c u r s i v e l y
Ar r ayL i s t <Ob j e c t [] > pa r ame t e rOb j e c t s ;
for (C l a s s paramete r : pa r ame te r s) {

p a r ame t e rOb j e c t s . add (. . .) ;
}

/ / Permute the c r e a t e d paramete r o b j e c t s
/ / i n c a s e o f mu l t i p l e c o n s t r u c t o r s f o r one paramete r
permuteParameter s (p a r ame t e rOb j e c t s) ;
for (Ob j e c t [] p a r ame t e rOb j e c t : p a r ame t e rOb j e c t s) {

/ / C rea t e o b j e c t o f each c o n s t r u c t o r
c l a s s O b j e c t s . add (c t o r . newIns tance (p a r ame t e rOb j e c t)) ;

}
}
/ / Get a v a i l a b l e methods
Method [] methods = c . ge tDec l a redMethods () ;
for (Method m : methods) {

for (Ob j e c t c l a s s O b j e c t : c l a s s O b j e c t s) {
/ / Get a v a i l a b l e pa r ame t e r s f o r methods
C las s <? >[] pa rame te r s = m. ge tPa ramete rTypes () ;
/ / C r ea t e and permute paramete r o b j e c t s
/ / f o r each method i n v o c a t i o n
Ar r ayL i s t <Ob j e c t [] > pa r ame t e rOb j e c t s =

c r e a t eAndPe rmu t a t eOb j e c t s (pa r ame te r s) ;
for (Ob j e c t [] p a r ame t e rOb j e c t : p a r ame t e rOb j e c t s) {

Ob j e c t r e t u rnVa l u e =
m. invoke (c l a s sOb j e c t , p a r ame t e rOb j e c t) ;

i f (! i s P r im i t i v e T y p e (r e t u rnVa l u e)) {
/ / e x p l o r e r e t u rn ed o b j e c t r e c u r s i v e l y

}
}

}
}

Recursion Flattening. To cope with this memory intensive task,
we split the total number of packages in the Android API into
several parts. For example, in case of our Nexus 5X with 2GB of
RAM, we split the Android API into four parts, which allows us to
perform this step without running out of memory. Now, each of
these four parts is inspected and prepared as depicted in Listing 1.

To improve performance and to enable profiling at all, we flatten
the recursive call hierarchy. More specifically, for all methods of
interest and their corresponding objects (which are required to
invoke the methods of interest), we perform the following step:
Invoke obj.method(...) and process the return value as follows.
• If it returns primitive data types, such as boolean and numerical
values—either as primitive data type, in an array, or in a collec-
tion of a subclass of java.util.Collection (e.g, ArrayList)—
the method and the corresponding object are stored (in a flat-
tened list) to be invoked during the profiling step later on.
• If it returns an Object, recursively invoke methods of interest
on this Object and repeat processing the return value(s) until
the pre-defined recursion depth is reached.
For the recursion flattening step, the configuration file allows

specifying two parameters. First, the recursion depth is currently
set to 2, which is a trade-off between performance (overall runtime
and memory consumption), and exhaustiveness (coverage) of ana-
lyzed methods. Second, it allows specifying classes for which the
corresponding objects (used to invoke a method of interest) should
be re-generated before each method invocation. For example, we
specified that NetworkStats.Bucket should be re-generated every
time methods of interest in this class are invoked, i.e., we invoke
each method of interest on a new object.

Parameter Selection. Although the SCAnDroid app generates
random parameters for most method invocations, the correspond-
ing parameters of constructors and methods can also be manually
analyzed in terms of their semantics to provide meaningful values,
e.g., in case of start and end times or storage UUIDs. In general, we
follow a trial and error approach to choose parameters for construc-
tor and method invocations. That is, in the first place, SCAnDroid
randomly chooses parameters. If object creation or method invo-
cation fails, e.g., due to an exception, we manually analyze the
resulting errors and thrown exceptions to pre-configure parame-
ters where random parameter selection seems to be the problem.
Besides static parameter values, such as specific start or end times,
SCAnDroid also supports dynamic parameter generation as well
as array-type parameters. For example, in case of a time stamp,
“System.currentTimeMillis()+10“ could be specified as param-
eter value for specific methods, which are evaluated before the
actual method invocation. Array-type parameters can be specified
in case a particular method or constructor should be invoked mul-
tiple times with different parameters. In total, we defined 73 values,
including array-type parameters, for 11 parameter names.

Pre-Profiling. After the objects and methods to be called as well
as the corresponding parameters have been acquired, events are
triggered continuously while the prepared methods are invoked
simultaneously. If the returned value of a method changes at least
once during two event triggering phases, we consider the corre-
sponding method in the subsequent profiling phase. This allows

SCAnDroid: Automated Side-Channel Analysis of Android APIs WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Table 1: Coverage of analyzed methods for API level 27 (Stock Android 8.1).
Methods # %
Available according to Java Reflections 53 913 -
Documented in the Android API 36 339 -
Public and considered relevant (get, is, has, query) 12 012 100.0%
In abstract classes or interfaces 2 860 23.8%
Corresponding object creation fails (e.g., due to exception or missing parameter) 3 664 30.5%
Corresponding class not found (android.test, junit.runner) 208 1.7%
Removed (e.g., due to segmentation faults in the android.graphics package) 511 4.3%
Crash (e.g., due to missing permissions or incorrect parameters) 692 5.8%
Theoretically to be profiled 4077 33.9%
Actually profiled 5 056 42.1%
Do not change for website launches 5 020 -
Change for website launches 36 -
Do not change for Google Maps queries 5 020 -
Change for Google Maps queries 36 -
Do not change for app starts 5 019 -
Change for app starts 37 -

us to significantly reduce the set of actual methods to be profiled,
as the majority of methods do not react while events are being
triggered. Overall, this pre-profiling step identifies methods that
possibly leak information and, thus, should be profiled in the next
step to assess possible information leaks.

Profiling. The actual profiling is the least intensive step in terms
of computations and memory consumption. The corresponding
methods are continuously invoked, while the events are being trig-
gered simultaneously on the device via the backend. The returned
values of these methods are gathered in dedicated files, which will
be analyzed by the Analyzer component in the backend later on.

Performance. On our test device, it takes about 7–8 hours for
the whole API (all four parts) to be processed. The most intensive
part is the pre-profiling step, which prepares the methods to be
profiled. The actual profiling depends on the number of events to
be triggered and the profiling time for each event. For example,
in case of triggering websites, we consider 20 websites, 8 samples
per website, a profiling time of 10 seconds, and a cool-down period
of 2 seconds between two events,3 resulting in a profiling time of
20 · 8 · (10 + 2) = 1 920 s , i.e., about half an hour. The subsequent
k-fold cross validation based on DTW takes about one minute.

3.3 Coverage Analysis
Table 2 depicts the configurations of our test device. Besides per-
forming the side-channel assessment, we also use this device to
investigate the coverage of profiled Android APIs by SCAnDroid,
which is indicated in Table 1. Interestingly, according to Java Reflec-
tions, the number of methods available (53 913) is larger than the
number of methods documented in the Android API (36 339). This
is due to the fact that Java Reflections allow inspecting private and
protected methods, which are, in general, not documented as they
are only available within a specific class or package, respectively.

As mentioned above, we consider methods to be of interest, if
they are prefixed with a specific keyword, such as get, has, is, or
query. Out of the 12 012 public methods that we consider as being
relevant, 2 860 methods are defined in abstract classes or interfaces
and, thus, cannot be invoked directly. For 3 664 non-static methods,

3These parameters are chosen similar to other website fingerprint attacks [12, 27].

Table 2: Device configurations.

Device Android
Nexus 5X (2GB RAM) LineageOS 15.1 (Android 8.1)
Nexus 5X (2GB RAM) Stock Android 8.1

a corresponding object could not be created, e.g., due to exceptions
while creating the object, missing constructors, or because param-
eter construction fails. For 208 methods, the corresponding class
required to call the method could not be found, e.g., in the pack-
ages android.test, and junit.runner. 511 methods have been re-
moved due to segmentation faults in the underlying native libraries
(mostly inside the android.graphics package). 692 methods crash
during the profiling, e.g., they throw an exception due to a missing
permission or an incorrect parameter and are thus not considered
in the side-channel assessment. In theory, SCAnDroid should thus
be able to cover about 4 077 methods of interest, i.e., 33.9% of the
relevant methods. However, due to the recursive approach followed
by SCAnDroid, we also use objects returned by recursive method
invocations to further increase the coverage to 5 056 methods of
interest (42.1%). For example, Context.getSystemService(...)
returns NetworkStats objects, which cannot be created directly.

We profiled these 5 056 methods while triggering events of inter-
est, i.e., website launches, Google Maps queries, and app starts. The
list of websites, apps, and points of interests (POIs) used for the
evaluations are given in Appendix A. Table 1 also shows that many
methods do not react while events are being triggered. Hence, the
information returned from these methods (probably) cannot be ex-
ploited. Although the information might not be exploitable directly,
another side-channel leak might still exist. For example, a timing
variation for different events or parameters might be observable.
This particular case is, however, beyond the scope of this paper.

Our experiment also revealed that 1 096 public methods, which
we consider relevant for side-channel analysis, e.g., prefixed with
get, has, is or query, have been added in Android 8.0 (Android
Oreo). This increasing number of APIs also stresses the importance
of an automatic approach to assess possible information leaks.

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard

Table 3: Information leaks for website fingerprinting on An-
droid 8.1. Accuracy evaluated for 20 websites. All APIs can
be accessed by zero-permission apps.

API Accuracy
android.net.TrafficStats.getMobileTxBytes() 89.4 %
android.net.TrafficStats.getTotalTxBytes() 88.8 %
android.net.TrafficStats.getMobileTxPackets() 86.2 %
android.net.TrafficStats.getTotalRxPackets() 85.6 %
android.net.TrafficStats.getTotalTxPackets() 85.0 %
android.net.TrafficStats.getMobileRxPackets() 83.1 %
android.net.TrafficStats.getTotalRxBytes() 79.4 %
android.net.TrafficStats.getMobileRxBytes() 76.2 %
android.app.usage.StorageStatsManager.
getFreeBytes(java.util.UUID)

46.9 %

java.io.File.getUsableSpace() 39.4 %
java.io.File.getFreeSpace() 38.1 %
android.os.storage.StorageManager.
getAllocatableBytes(java.util.UUID)

36.2 %

android.os.Process.getElapsedCpuTime() 21.9 %

4 CASE STUDIES
In this section, we demonstrate the applicability of SCAnDroid by
automatically analyzing the Android API for possible information
leaks in various attack scenarios.

4.1 Website Fingerprinting
The idea of website fingerprinting attacks is to observe side-channel
information on mobile devices and to determine the websites a user
navigates to. Such attacks represent a severe privacy threat as has
been argued in [12, 27]. To assess possible information leaks in the
Android API that allow conducting such website fingerprinting
attacks, we automatically launch websites in the browser applica-
tion and simultaneously profile the Android API in the background.
Similar to [12, 27], we considered a profiling duration of 10 seconds
for each website and gathered 8 samples (time series) per website.

Normal Permissions (Zero-PermissionApps). Table 3 depicts
information leaks that enable website fingerprinting on Android
8.1 (Android Oreo) when launching websites in Google Chrome 64.
The accuracy has been evaluated for the top 20 websites according
to alexa.com, where duplicates have been removed. Although per-
application statistics have been restricted in Android 7 (Android
Nougat), SCAnDroid revealed that global statistics released via the
TrafficStats API still allow website fingerprinting.

The java.util.UUID required by the StorageStatsManager
and StorageManager API represents a 128-bit ID identifying the
storage volume. This parameter has been set in the configuration file
in order to provide ameaningful parameter. Interestingly, these APIs
have been added in Android 8 (Android Oreo) and, thus, represent
new information leaks introduced in the latest Android version.

While the network statistics provided via the TrafficStats
API might be considered as more obvious information leaks, the
information leaks via the File API are more subtle. More specif-
ically, the API File.getUsableSpace() reports the number of
bytes available to non-root users, and File.getFreeSpace() re-
ports the number of bytes available to root users [2]. To the best of

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Top N results

Ac
cu
ra
cy

TrafficStats.getMobileTxBytes()

TrafficStats.getMobileRxBytes()

File.getFreeSpace()

File.getUsableSpace()

Random guessing

Figure 3: Inference accuracy for websites when considering
the top N results returned from the classifier.

our knowledge, there is no study yet discussing the possibility to
infer visited websites based on these APIs. Even if an inference accu-
racy of about 40% for the API java.io.File.getUsableSpace()
seems to be quite moderate, randomly guessing the correct website
out of a set of 20 websites yields an accuracy of 1

20 = 5%. Thus,
SCAnDroid clearly identified an information leak.

Figure 2 illustrates traces for three of the identified information
leaks for amazon.com and reddit.com. We observe similarities be-
tween traces for the same website and differences between different
websites. SCAnDroid successfully detected the corresponding in-
formation leaks using DTW. Experiments on Android 7 (Android
Nougat) revealed similar results and have been omitted.

Top N Metric. A more conservative metric to identify informa-
tion leaks is to consider the accuracy when taking the top N results
returned from the classifier into consideration, which is illustrated
in Figure 3. If we consider the top 3 websites returned from the
classifier based on DTW, we achieve an inference accuracy of more
than 60% for these information leaks. Furthermore, we observe that
all information leaks significantly outperform random guessing.

Dangerous and System-Level Permissions. Considering APIs
that require dangerous permissions, SCAnDroid also identified
APIs that can be exploited to conduct side-channel attacks. Table 4
depicts the identified information leaks that allow website finger-
printing on Android 8.1 (Android Oreo) when launching websites
in Google Chrome 64. We provide these results here for the sake
of completeness only since these resources cannot be exploited by
zero-permission apps.

In order to retrieve a NetworkStats.Bucket object, SCAnDroid
invoked NetworkStatsManager.querySummaryForDevice(. . .)
with parameters int networkType, String subscriberId, long
startTime, and long endTime. Querying this method requires the
PACKAGE_USAGE_STATS (system-level) permission, and the param-
eters have been pre-configured in the configuration file. For in-
stance, networkType has been set to TYPE_MOBILE, subscriberId

alexa.com
amazon.com
reddit.com

SCAnDroid: Automated Side-Channel Analysis of Android APIs WiSec ’18, June 18–20, 2018, Stockholm, Sweden

0 2,000 4,000 6,000 8,000 10,000

0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

Time [ms]

Tr
af
fi
cS
ta
ts
.g
et
To
ta
lR
xB
yt
es
()

amazon.com

Time series 1
Time series 2
Time series 3

0 2,000 4,000 6,000 8,000 10,000

0

20,000

40,000

60,000

80,000

1 · 105

Time [ms]

Tr
af

fi
cS

ta
ts

.g
et

To
ta

lT
xB

yt
es

()

amazon.com

Time series 1
Time series 2
Time series 3

0 2,000 4,000 6,000 8,000 10,000

0

1 · 105

2 · 105

3 · 105

Time [ms]

Fi
le
.g
et
Fr
ee
Sp
ac
e(
)

amazon.com

Time series 1
Time series 2
Time series 3

0 2,000 4,000 6,000 8,000 10,000

0

1 · 105

2 · 105

3 · 105

Time [ms]

Tr
af

fi
cS

ta
ts

.g
et

To
ta

lR
xB

yt
es

()

reddit.com

Time series 1
Time series 2
Time series 3

0 2,000 4,000 6,000 8,000 10,000

0

20,000

40,000

60,000

Time [ms]

Tr
af

fi
cS

ta
ts

.g
et

To
ta

lT
xB

yt
es

()
reddit.com

Time series 1
Time series 2
Time series 3

0 2,000 4,000 6,000 8,000 10,000

0

2 · 105

4 · 105

6 · 105

Time [ms]

Fi
le
.g
et
Fr
ee
Sp
ac
e(
)

reddit.com

Time series 1
Time series 2
Time series 3

Figure 2: TrafficStats.getTotalRxBytes(), TrafficStats.getTotalTxBytes(), and File.getFreeSpace() when launching
amazon.com and reddit.com, respectively.

Table 4: Information leaks for website fingerprinting on An-
droid 8.1. Accuracy evaluated for 20 websites. All APIs re-
quire dangerous or system-level permissions.

API(s) requiring PACKAGE_USAGE_STATS
(system-level permission) Accuracy

android.app.usage.NetworkStats.Bucket.getTxBytes() 90.0 %
android.app.usage.NetworkStats.Bucket.getTxPackets() 85.6 %
android.app.usage.NetworkStats.Bucket.getRxPackets() 83.1 %
android.app.usage.NetworkStats.Bucket.getRxBytes() 76.9 %
API(s) requiring READ_PHONE_STATE
(dangerous permission)
android.telephony.TelephonyManager.getDataActivity() 20.0 %

has been set to “TelephonyManager.getSubscriberId()”, which
in turn requires the READ_PHONE_STATE (dangerous) permission,
startTime has been set to System.currentTimeMillis(), and
endTime has been set to “System.currentTimeMillis()+100”, re-
spectively. This example demonstrates that SCAnDroid is able to
handle complex method invocations.

We verified the information leaks by manually launching the 20
websites in the browser and monitoring the identified information
leaks in the background. As shown in Appendix B, the identified
APIs also leak in case of manually triggering the event.

4.2 Google Maps Search Inference
Inspired by Zhang et al. [35], who suggested to infer search queries
in Apple Maps by exploiting side-channel information, we consider

such a scenario on Android. Such an attack allows zero-permission
apps to infer what places a user might want to visit or what places
the user is interested. Again, to automatically assess possible in-
formation leaks in the Android API, we automatically search for
various POIs in Google Maps and simultaneously profile the An-
droid API for 15 seconds in the background.

Normal Permissions (Zero-PermissionApps). Table 5 depicts
the identified information leaks for inferring Google Maps search
queries on Android 8.1 (Android Oreo). The accuracy has been
evaluated for 20 POIs around the world, and 8 samples per POI.
Again, the TrafficStats API reporting global network traffic sta-
tistics allows inferring these events with a high accuracy. Although
java.io.File.getUsableSpace() achieves an accuracy of 10.6%
only, it still represents an information leak since randomly guessing
would result in an accuracy of 1

20 = 5%.
Figure 4 illustrates traces for three of the identified information

leaks when querying Google Maps for Eiffel Tower and The Great
Wall, respectively. For TrafficStats.getMobileRxBytes() and
TrafficStats.getMobileTxBytes() we observe similarities be-
tween traces for the same POI and differences between the two
POIs. However, while the time series of File.getUsableSpace()
for The Great Wall seem to be correlated, the time series for the Eif-
fel Tower only share a few peaks and patterns, which decreases the
accuracy. Nevertheless, exploiting this API by matching gathered
time series with DTW still outperforms random guessing attacks.

amazon.com
reddit.com

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard

1,000 5,000 10,000 15,000

0

1 · 105

2 · 105

3 · 105

Time [ms]

Tr
af
fi
cS
ta
ts
.g
et
Mo
bi
le
Rx
By
te
s(
)

Eiffel Tower

Time series 1
Time series 2
Time series 3

1,000 5,000 10,000 15,000

0

10,000

20,000

30,000

40,000

Time [ms]

Tr
af

fi
cS

ta
ts

.g
et

Mo
bi

le
Tx

By
te

s(
)

Eiffel Tower

Time series 1
Time series 2
Time series 3

1,000 5,000 10,000 15,000

0

50,000

1 · 105

1.5 · 105

Time [ms]

Fi
le

.g
et

Us
ab

le
Sp

ac
e(

)

Eiffel Tower

Time series 1
Time series 2
Time series 3

1,000 5,000 10,000 15,000

0

50,000

1 · 105

1.5 · 105

2 · 105

2.5 · 105

Time [ms]

Tr
af

fi
cS

ta
ts

.g
et

Mo
bi

le
Rx

By
te

s(
)

The Great Wall

Time series 1
Time series 2
Time series 3

1,000 5,000 10,000 15,000

0

10,000

20,000

30,000

Time [ms]

Tr
af

fi
cS

ta
ts

.g
et

Mo
bi

le
Tx

By
te

s(
)

The Great Wall

Time series 1
Time series 2
Time series 3

0 2,000 4,000 6,000 8,000 10,000 12,000

0

50,000

1 · 105

Time [ms]

Fi
le
.g
et
Us
ab
le
Sp
ac
e(
)

The Great Wall

Time series 1
Time series 2
Time series 3

Figure 4: TrafficStats.getMobileRxBytes(), TrafficStats.getMobileTxBytes(), and File.getUsableSpace() when searching
for Eiffel Tower and The Great Wall, respectively.

Table 5: Information leaks for Google Maps searches on An-
droid 8.1. Accuracy evaluated for 20 POIs. All APIs can be
accessed by zero-permission apps.

API Accuracy
android.net.TrafficStats.getTotalRxBytes() 87.5 %
android.net.TrafficStats.getMobileRxBytes() 83.8 %
android.net.TrafficStats.getMobileRxPackets() 76.2 %
android.net.TrafficStats.getTotalRxPackets() 73.1 %
android.net.TrafficStats.getTotalTxPackets() 68.1 %
android.net.TrafficStats.getMobileTxPackets() 66.9 %
android.net.TrafficStats.getTotalTxBytes() 49.4 %
android.net.TrafficStats.getMobileTxBytes() 48.8 %
android.app.usage.StorageStatsManager.
getFreeBytes(java.util.UUID)

16.2 %

android.os.storage.StorageManager.
getAllocatableBytes(java.util.UUID)

13.1 %

android.os.Process.getElapsedCpuTime() 13.1 %
java.io.File.getFreeSpace() 11.9 %
java.io.File.getUsableSpace() 10.6 %

Top N Metric. Figure 5 illustrates the inference accuracy when
considering the top N results returned from the classifier. Again,
all information leaks outperform random guessing attacks.

Dangerous and System-Level Permissions. Table 6 depicts
the identified information leaks that allow inferring Google Maps
searches on Android 8.1 (Android Oreo) when considering apps

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Top N results

Ac
cu
ra
cy

TrafficStats.getMobileRxBytes()

TrafficStats.getMobileTxBytes()

File.getUsableSpace()

Process.getElapsedCpuTime()

Random guessing

Figure 5: Inference accuracy for Google Maps queries when
considering the top N results returned from the classifier.

that request dangerous permissions. Thus, these resources cannot
be exploited by zero-permission apps. The NetworkStats.Bucket
object has been retrieved as described in Section 4.1.

SCAnDroid: Automated Side-Channel Analysis of Android APIs WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Table 6: Information leaks for Google Maps searches on An-
droid 8.1. Accuracy evaluated for 20 POIs. All APIs require
system-level or dangerous permissions.

API(s) requiring PACKAGE_USAGE_STATS
(system-level permission) Accuracy

android.app.usage.NetworkStats.Bucket.getRxBytes() 85.0 %
android.app.usage.NetworkStats.Bucket.getRxPackets() 75.0 %
android.app.usage.NetworkStats.Bucket.getTxPackets() 64.4 %
android.app.usage.NetworkStats.Bucket.getTxBytes() 49.4 %
API(s) requiring READ_PHONE_STATE
(dangerous permission)
android.telephony.TelephonyManager.getDataActivity() 18.8 %

Table 7: Information leaks for app inference on Android 8.1.
Accuracy evaluated for 20 apps. All APIs can be accessed by
zero-permission apps.

API Accuracy
android.net.TrafficStats.getTotalRxBytes() 85.6 %
android.net.TrafficStats.getMobileRxBytes() 84.4 %
android.net.TrafficStats.getTotalTxPackets() 83.1 %
android.net.TrafficStats.getMobileTxPackets() 82.5 %
android.net.TrafficStats.getTotalRxPackets() 81.9 %
android.net.TrafficStats.getMobileTxBytes() 80.0 %
android.net.TrafficStats.getMobileRxPackets() 80.0 %
android.net.TrafficStats.getTotalTxBytes() 76.9 %
android.os.storage.StorageManager.
getAllocatableBytes(java.util.UUID)

61.2 %

java.io.File.getFreeSpace() 60.6 %
java.io.File.getUsableSpace() 57.5 %
android.app.usage.StorageStatsManager.
getFreeBytes(java.util.UUID)

53.1 %

android.os.Process.getElapsedCpuTime() 35.6 %

4.3 Application Start Inference
The idea of app start inference attacks is to observe side-channel
information in order to learn currently executed applications on a
mobile device. Currently executed apps represent sensitive informa-
tion as this information enables targeted attacks, such as stealing
login credentials [8]. Therefore, since Android 5 (Android Lollipop)
the list of running apps cannot be retrieved by third-party applica-
tions anymore. Still by exploiting side-channel information from
the procfs [10, 28] it is possible to infer running applications. Again,
in order to assess possible information leaks in the Android API,
we automatically start applications and simultaneously profile the
Android API for 8 seconds in the background.

Normal Permissions (Zero-PermissionApps). Table 7 depicts
the identified information leaks for application cold starts on An-
droid 8.1 (Android Oreo). The accuracy has been evaluated for 20
apps and 8 samples per app. Again, global network statistics allow
inferring application cold starts with a high accuracy.

Top N Metric. Figure 6 indicates the inference accuracy when
considering the top N results returned from the classifier. Again, this
plot demonstrates that the identified information leaks outperform
random guessing attacks.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Top N results

Ac
cu
ra
cy

TrafficStats.getTotalRxBytes()

TrafficStats.getTotalTxBytes()

File.getUsableSpace()

Process.getElapsedCpuTime()

Random guessing

Figure 6: Inference accuracy for app starts when considering
the top N results returned from the classifier.

Table 8: Information leaks for application inference on An-
droid 8.1. Accuracy evaluated for 20 apps. All APIs require
system-level permissions.

API(s) requiring PACKAGE_USAGE_STATS
(system-level permission) Accuracy

android.app.usage.NetworkStats.Bucket.getRxBytes() 85.0 %
android.app.usage.NetworkStats.Bucket.getRxPackets() 83.8 %
android.app.usage.NetworkStats.Bucket.getTxPackets() 78.8 %
android.app.usage.NetworkStats.Bucket.getTxBytes() 78.8 %

Dangerous and System-Level Permissions. Table 8 depicts
the identified information leaks that allow inferring application
starts on Android 8.1 (Android Oreo) when considering apps that
request dangerous permissions. Thus, these resources cannot be
exploited by zero-permission apps. The NetworkStats.Bucket ob-
ject has been retrieved as described in Section 4.1.

5 DISCUSSION
Limitations. Similar to the limitations of ProcHarvester [28],

SCAnDroid also suffers from false negatives. That is, even though
SCAnDroid does not report an information leak for a specific
event and a specific API level, this does not guarantee that there are
indeed no information leaks present. However, automated analysis
tools always aim to generalize the detection of information leaks
and, thus, possibly suffer from false negatives.

Countermeasures. We believe that an automated tool such as
SCAnDroid represents a valuable tool for OS developers to test
whether or not a newly introduced API interface leaks sensitive in-
formation. Thereby, identified information leaks could be prevented
in the first place, i.e., before the corresponding API interfaces are
released. Currently, it seems that side-channel leaks on the API
level need to be addressed on the OS level. For example, by re-
stricting access to these APIs or by releasing more coarse-grained
information in case of some statistics.

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard

More generic approaches such as App Guardian [34] that aim
to detect ongoing side-channel attacks by monitoring side-channel
information of currently executed applications represent an inter-
esting approach to cope with software-based side-channel attacks.
However, App Guardian relies on resources that have been re-
stricted in newer Android versions and, thus, this approach needs
to be constantly updated in order to deal with these restrictions.

Future Work. As the application of SCAnDroid demonstrated,
the Android API exposes many exploitable interfaces that enable
side-channel attacks, even on the latest Android 8 (Android Oreo).
However, considering the complexity of the Java-based Android
API, there is still room for improvement for automatic frameworks
such as SCAnDroid. For instance, to further increase the coverage
of the analyzed Android framework, SCAnDroid could be extended
to support Android-specific callback interfaces. More specifically,
Android handles sensor events via so-called listeners. Thereby, an
app registers sensor-event listeners that get notified in case of
sensor updates. Currently, such listener APIs are not covered by
SCAnDroid.

In addition, as our coverage analysis in Section 3.3 revealed, there
are still a few hundred methods left that have not been profiled
so far. Especially Java interfaces that call native libraries, e.g., in
case of the android.graphics package, crash due to segmentation
faults. These faults require further analysis in order to determine
why these interfaces crash, and whether or not these interfaces can
be profiled by specifying pre-configured parameters in the configu-
ration file (instead of randomly chosen parameters). For example, it
might be possible that the parameters chosen by SCAnDroid are
outside of a defined range, which causes the method to crash. Nev-
ertheless, with a coverage of about 42.1% of all public methods that
are prefixed with get, has, is, and query, several new information
leaks have been detected in the Android API.

As already mentioned in Section 3.3, a method might expose
a different timing behavior due to different input parameters or
due to different events being triggered. For example, on iOS it has
been shown [35] that the fileExistsAtPath API yields a different
timing depending on whether or not the passed file exists, even if
the running app is not allowed to read the file. Future work should
possibly consider the extension of automated frameworks to cover
such information leaks as well.

6 CONCLUSION
In this paper we introduced SCAnDroid, a framework to automati-
cally assess the Java-based Android API for possible side-channel
leaks. To enable such an automatic assessment of side-channel leaks
in the Android framework, we had to tackle the challenge of dealing
with the variety of Java APIs.

The need for a framework such as SCAnDroid arises from the
observation that manual analysis of side-channel information leaks
is tedious and error-prone, i.e., information leaks tend to be over-
looked, especially in case of very subtle information leaks. Thus,
we argue that automated frameworks for such tasks are inevitable.
First, to investigate existing APIs and to fix identified information
leaks and, second, to identify information leaks of APIs upfront.

We demonstrated the applicability of SCAnDroid in practice
by considering various side-channel attacks—already known from

manual investigations in the literature—and we identified several
information leaks automatically. These findings clearly underline
the effectiveness of our chosen approach. Especially network traf-
fic statistics—even though published only globally since Android
7 (Android Nougat)—represent sensitive information that allows
inferring most of the triggered events rather accurately. Mostly
because smartphones are connected to the Internet all the time,
and heavily rely on Internet connectivity to provide the desired
functionality. Hence, the publication of such statistics must be re-
considered.

Overall we believe that SCAnDroid advances the API-based
side-channel analysis on mobile devices and hopefully helps to
prevent various information leaks in the first place.

ACKNOWLEDGMENTS
The research leading to these results has re-
ceived funding from the European Union’s
Horizon 2020 research and innovation pro-
gramme under grant agreement No 644052
(HECTOR). This project has received funding
from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681402).

REFERENCES
[1] Android Developers. n. d.. Android Debug Bridge (ADB). https://developer.

android.com/studio/command-line/adb.html. Accessed: February 2018.
[2] Android Developers. n. d.. File API. https://developer.android.com/reference/

java/io/File.html. Accessed: February 2018.
[3] Android Developers. n. d.. Package Index. https://developer.android.com/

reference/packages.html. Accessed: February 2018.
[4] Android Developers. n. d.. Permissions Overview. https://developer.android.

com/guide/topics/permissions/overview.html. Accessed: February 2018.
[5] Android Developers. n. d.. TrafficStats API. https://developer.android.com/

reference/android/net/TrafficStats.html. Accessed: February 2018.
[6] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. 2012. Prac-

ticality of Accelerometer Side Channels on Smartphones. In Annual Computer
Security Applications Conference – ACSAC 2012. ACM, 41–50.

[7] Liang Cai and Hao Chen. 2011. TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion. In USENIX Workshop on Hot Topics in Security –
HotSec. USENIX Association.

[8] Qi Alfred Chen, Zhiyun Qian, and ZhuoqingMorley Mao. 2014. Peeking into Your
App without Actually Seeing It: UI State Inference and Novel Android Attacks.
In USENIX Security Symposium 2014. USENIX Association, 1037–1052.

[9] Maximilian Christ, Andreas W. Kempa-Liehr, and Michael Feindt. 2016. Dis-
tributed and Parallel Time Series Feature Extraction for Industrial Big Data
Applications. arXiv ePrint Archive, Report 1610.07717 (2016).

[10] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. 2016. No Pardon for
the Interruption: New Inference Attacks on Android Through Interrupt Timing
Analysis. In IEEE Symposium on Security and Privacy – S&P 2016. IEEE Computer
Society, 414–432.

[11] Muzammil Hussain, Ahmed Al-Haiqi, A. A. Zaidan, B. B. Zaidan, Miss Laiha Mat
Kiah, Nor Badrul Anuar, and Mohamed Abdulnabi. 2016. The Rise of Keyloggers
on Smartphones: A Survey and Insight Into Motion-Based Tap Inference Attacks.
Pervasive and Mobile Computing 25 (2016), 1–25.

[12] Suman Jana and Vitaly Shmatikov. 2012. Memento: Learning Secrets from Process
Footprints. In IEEE Symposium on Security and Privacy – S&P 2012. IEEE Computer
Society, 143–157.

[13] Chia-Chi Lin, Hongyang Li, Xiao-yong Zhou, and XiaoFeng Wang. 2014. Screen-
milker: How to Milk Your Android Screen for Secrets. In Network and Distributed
System Security Symposium – NDSS 2014. The Internet Society.

[14] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security Symposium 2016. USENIX Association, 549–564.

[15] Glen McCluskey. 1998. Using Java Reflections. http://www.oracle.com/
technetwork/articles/java/javareflection-1536171.html. Accessed: February 2018.

[16] Maryam Mehrnezhad, Ehsan Toreini, Siamak Fayyaz Shahandashti, and Feng
Hao. 2016. TouchSignatures: Identification of User Touch Actions and PINs based

https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/reference/java/io/File.html
https://developer.android.com/reference/java/io/File.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/guide/topics/permissions/overview.html
https://developer.android.com/guide/topics/permissions/overview.html
https://developer.android.com/reference/android/net/TrafficStats.html
https://developer.android.com/reference/android/net/TrafficStats.html
http://www.oracle.com/technetwork/articles/java/javareflection-1536171.html
http://www.oracle.com/technetwork/articles/java/javareflection-1536171.html

SCAnDroid: Automated Side-Channel Analysis of Android APIs WiSec ’18, June 18–20, 2018, Stockholm, Sweden

on Mobile Sensor Data via JavaScript. J. Inf. Sec. Appl. 26 (2016), 23–38.
[17] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan Boneh,

and Gabi Nakibly. 2015. PowerSpy: Location Tracking UsingMobile Device Power
Analysis. In USENIX Security Symposium 2015. USENIX Association, 785–800.

[18] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury. 2012. Tapprints: Your Finger Taps Have Fingerprints. In Mobile
Systems – MobiSys 2012. ACM, 323–336.

[19] Meinard Müller. 2007. Dynamic Time Warping. Springer, 69–84. https://doi.org/
10.1007/978-3-540-74048-3

[20] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. 2012.
ACCessory: Password Inference Using Accelerometers on Smartphones. InMobile
Computing Systems and Applications – HotMobile 2012. ACM, 9.

[21] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[22] Dan Ping, Xin Sun, and Bing Mao. 2015. TextLogger: Inferring Longer Inputs
on Touch Screen Using Motion Sensors. In Security and Privacy in Wireless and
Mobile Networks – WISEC 2015. ACM, 24:1–24:12.

[23] Laurent Simon and Ross J. Anderson. 2013. PIN Skimmer: Inferring PINs Through
the Camera and Microphone. In Security and Privacy in Smartphones & Mobile
Devices – SPSM@CCS. ACM, 67–78.

[24] Laurent Simon, Wenduan Xu, and Ross J. Anderson. 2016. Don’t Interrupt
Me While I Type: Inferring Text Entered Through Gesture Typing on Android
Keyboards. PoPETs 2016 (2016), 136–154.

[25] Raphael Spreitzer. 2014. PIN Skimming: Exploiting the Ambient-Light Sensor
in Mobile Devices. In Security and Privacy in Smartphones & Mobile Devices –
SPSM@CCS. ACM, 51–62.

[26] Raphael Spreitzer and Benoît Gérard. 2014. Towards More Practical Time-Driven
Cache Attacks. In Information Security Theory and Practice – WISTP 2014 (LNCS),
Vol. 8501. Springer, 24–39.

[27] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Mangard. 2016.
Exploiting Data-Usage Statistics for Website Fingerprinting Attacks on Android.
In Security and Privacy in Wireless and Mobile Networks – WISEC 2016. ACM,
49–60.

[28] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan Mangard. 2018.
ProcHarvester: Fully Automated Analysis of Procfs Side-Channel Leaks on An-
droid. In Asia Conference on Computer and Communications Security – AsiaCCS
2018. ACM. In press.

[29] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard.
2018. Systematic Classification of Side-Channel Attacks: A Case Study for Mobile
Devices. IEEE Communications Surveys and Tutorials 20 (2018), 465–488.

[30] Raphael Spreitzer and Thomas Plos. 2013. Cache-Access Pattern Attack on
Disaligned AES T-Tables. In Constructive Side-Channel Analysis and Secure Design
– COSADE 2013 (LNCS), Vol. 7864. Springer, 200–214.

[31] Raphael Spreitzer and Thomas Plos. 2013. On the Applicability of Time-Driven
Cache Attacks on Mobile Devices. In Network and System Security – NSS 2013
(LNCS), Vol. 7873. Springer, 656–662.

[32] Pepe Vila and Boris Köpf. 2017. Loophole: Timing Attacks on Shared Event Loops
in Chrome. In USENIX Security Symposium 2017. USENIX Association, 849–864.

[33] Zhi Xu, Kun Bai, and Sencun Zhu. 2012. TapLogger: Inferring User Inputs on
Smartphone Touchscreens Using On-Board Motion Sensors. In Security and
Privacy in Wireless and Mobile Networks – WISEC 2012. ACM, 113–124.

[34] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiao-yong Zhou, and XiaoFeng
Wang. 2015. Leave Me Alone: App-Level Protection against Runtime Information
Gathering on Android. In IEEE Symposium on Security and Privacy – S&P 2015.
IEEE Computer Society, 915–930.

[35] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yinqian Zhang, and XiaoFeng
Wang. 2018. OS-level Side Channels without Procfs: Exploring Cross-App Infor-
mation Leakage on iOS. In Network and Distributed System Security Symposium –
NDSS 2018. The Internet Society.

[36] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. 2016. Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for Android Devices. In
Conference on Computer and Communications Security – CCS 2016. ACM, 858–870.

[37] Xiao-yong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt. 2013. Identity, Loca-
tion, Disease and More: Inferring Your Secrets From Android Public Resources.
In Conference on Computer and Communications Security – CCS 2013. ACM, 1017–
1028.

A CONSIDEREDWEBSITES, APPS, AND POIS
Tables 9, 10, and 11 show thewebsites, the POIs, and the applications
used for the evaluations in this paper.

Table 9:Websites used forwebsite fingerprinting evaluation.

http://www.360.cn http://www.netflix.com
http://www.amazon.com http://www.qq.com
http://www.baidu.com http://www.reddit.com
http://www.facebook.com http://www.sina.com.cn
http://www.google.com http://www.sohu.com
http://www.imgur.com http://www.tmall.com
http://www.instagram.com http://www.vk.com
http://www.jd.com http://www.wikipedia.org
http://www.linkedin.com http://www.yahoo.com
http://www.live.com http://www.yandex.ru

Table 10: POIs used for Google Maps evaluation.

Acropolis of Athens Petronas Towers
Big Ben Pyeongchang
Burj Khalifa Pyongyang
Cape Town Pyramids of Giza
Colosseum Rome Singapore
Eiffel Tower Sydney Harbour
Empire State Building Taipei 101
Mirabell Gardens The Great Wall of China
Mt. Everest Toronto Canada
Peking Wencelas Square Prague

Table 11: Applications used for app start evaluation.

com.airbnb.android
com.duckduckgo.mobile.android
com.fsck.k9
com.instagram.android
com.isis_papyrus.raiffeisen_pay_eyewdg
com.moshbit.studo
com.paypal.android.p2pmobile
com.tripadvisor.tripadvisor
com.twitter.android
com.waze
com.whatsapp
de.mcdonalds.mcdonaldsinfoapp
de.pilot.newyorker.android
de.prosiebensat1digital.prosieben
de.spiegel.android.app.spon
de.zalando.mobile
org.chromium.chrome
org.indywidualni.fblite
org.mozilla.firefox
org.zwanoo.android.speedtest

B MANUALLY TRIGGERED EVENTS
Table 12 depicts the verified information leaks of manually launched
websites. The evaluation has been performed with the same set of
20 websites as listed in Table 9. The identified information leaks
are the same as the ones revealed during the automatic evaluation
in Section 4.1.

https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/10.1007/978-3-540-74048-3

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard

Table 12: Information leaks for website fingerprinting of
manually triggered events on Android 8.1.

API(s) Accuracy
android.net.TrafficStats.getTotalTxPackets() 51.9 %
android.net.TrafficStats.getTotalTxBytes() 46.9 %
android.net.TrafficStats.getTotalRxBytes() 46.9 %
android.net.TrafficStats.getMobileTxBytes() 45.6 %
android.net.TrafficStats.getMobileRxPackets() 45.0 %
android.net.TrafficStats.getMobileRxBytes() 45.0 %
android.net.TrafficStats.getMobileTxPackets() 43.1 %
android.net.TrafficStats.getTotalRxPackets() 41.2 %
java.io.File.getUsableSpace() 18.8 %
java.io.File.getFreeSpace() 16.2 %
android.app.usage.StorageStatsManager.
getFreeBytes(java.util.UUID)

16.2 %

android.os.storage.StorageManager.
getAllocatableBytes(java.util.UUID)

13.8 %

android.os.Process.getElapsedCpuTime() 13.8 %
API(s) requiring PACKAGE_USAGE_STATS (system-level)
android.app.usage.NetworkStats.Bucket.getTxPackets() 46.9 %
android.app.usage.NetworkStats.Bucket.getRxPackets() 46.9 %
android.app.usage.NetworkStats.Bucket.getTxBytes() 46.2 %
android.app.usage.NetworkStats.Bucket.getRxBytes() 41.2 %
API(s) requiring READ_PHONE_STATE (dangerous permission)
android.telephony.TelephonyManager.getDataActivity() 7.5 %

	Abstract
	1 Introduction
	2 Background
	3 SCAnDroid
	3.1 Backend
	3.2 Smartphone Service
	3.3 Coverage Analysis

	4 Case Studies
	4.1 Website Fingerprinting
	4.2 Google Maps Search Inference
	4.3 Application Start Inference

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	A Considered Websites, Apps, and POIs
	B Manually Triggered Events

