
Automated Binary Analysis on iOS –
A Case Study on Cryptographic Misuse in iOS Applications

Johannes Feichtner
Graz University of Technology

David Missmann
Graz University of Technology

Raphael Spreitzer
Graz University of Technology

ABSTRACT
A wide range of mobile applications for Apple’s iOS platform pro-
cess sensitive data and, therefore, rely on protective mechanisms
natively provided by the operating system. A wrong application of
cryptography or security-critical APIs, however, exposes secrets to
unrelated parties and undermines the overall security.

We introduce an approach for uncovering cryptographic misuse
in iOS applications. We present a way to decompile 64-bit ARM
binaries to their LLVM intermediate representation (IR). Based on
the reverse-engineered code, static program slicing is applied to
determine the data flow in relevant code segments. For this analysis
to be most accurate, we propose an adapted version of Andersen’s
pointer analysis, capable of handling decompiled LLVM IR code
with type information recovered from the binary. To finally high-
light the improper usage of cryptographic APIs, a set of predefined
security rules is checked against the extracted execution paths. As a
result, we are not only able to confirm the existence of problematic
statements in iOS applications but can also pinpoint their origin.

To evaluate the applicability of our solution and to disclose possi-
ble weaknesses, we conducted a manual and automated inspection
on a set of iOS applications that include cryptographic functionality.
We found that 343 out of 417 applications (82%) are subject to at
least one security misconception. Among the most common flaws
are the usage of non-random initialization vectors and constant
encryption keys as input to cryptographic primitives.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;

KEYWORDS
iOS, Reverse Engineering, ProgramAnalysis, Cryptographic Misuse

ACM Reference Format:
Johannes Feichtner, David Missmann, and Raphael Spreitzer. 2018. Auto-
mated Binary Analysis on iOS – A Case Study on Cryptographic Mis-
use in iOS Applications. In WiSec ’18: Proceedings of the 11th ACM Con-
ference on Security & Privacy in Wireless and Mobile Networks, June 18–
20, 2018, Stockholm, Sweden. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3212480.3212487

1 INTRODUCTION
Smartphones are ubiquitous in our daily lives and facilitate mo-
bile working. Extensive technological capabilities of these devices

WiSec ’18, June 18–20, 2018, Stockholm, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published inWiSec ’18: Proceedings
of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks,
June 18–20, 2018, Stockholm, Sweden, https://doi.org/10.1145/3212480.3212487.

enable consumers to carry out tasks that would have required a
personal computer some years ago. Since the Apple iOS operating
system is among the most popular mobile platforms, many soft-
ware developers are also deploying programs that process sensitive
user data. A common method to protect this information is the use
of security APIs and cryptographic functionality, provided by the
platform. For this to be effective, essential rules need to be obeyed,
as otherwise the attainable level of security would be weakened or,
in the worst case, entirely defeated. Among these essential rules
are, for example, (1) the need to prevent the electronic code book
(ECB) mode for block ciphers, (2) the need to prevent static keys or
credentials, which are in the worst-case hard-coded into the appli-
cation, or (3) the need to prevent static seeds for generating random
numbers. Irrespective of whether an erroneous implementation is a
result of a developer’s ignorance, lack of knowledge, or a too com-
plex documentation of the crypto API, the identification of crypto
API misuse is of utmost importance to protect sensitive data and to
provide the intended functionality, e.g., in case of password man-
agers. Since developers usually do not provide detailed information
and the source code of mobile applications is not made available,
the correct implementation of cryptographic functionality can only
be verified by reverse engineering the final application.

Analysis frameworks for the Android platform are already avail-
able and studies [12, 16] have confirmed that cryptographic mis-
use represents a significant problem on Android. Although one
would expect that cryptographic misuse is also present on iOS plat-
forms, an analysis on iOS has not been performed so far. Hence,
the motivating questions in this paper are: (1) What is needed to
automatically analyze iOS apps for possible crypto misuse, and (2)
do iOS apps actually violate common cryptographic principles? In
contrast to the Android platform [12, 20], such an analysis repre-
sents a challenging task on the iOS platform. For instance, Android
applications are provided in a reversible bytecode format, whereas
iOS applications are compiled to machine code that is tailored to a
particular CPU architecture. Manually inspecting the disassembled
code of an iOS binary can be a challenging endeavor. The increasing
complexity and size of today’s applications impede a conclusive
analysis of security-critical programs. Automated binary analysis
tools, in contrast, are typically not aligned to the characteristics of
the iOS platform and, thus, fail to perform a thorough data flow
analysis. Among these characteristics are, for example, dynamic
control-flow decisions and the use of a pointer-aware language,
where pointers may point to different memory locations and mem-
ory locations may be referenced from different pointer variables
(aliasing). Especially the use of a pointer-aware language requires
particular attention in order to focus on code parts that are essential
for a particular computation by means of program slicing [55].

https://doi.org/10.1145/3212480.3212487
https://doi.org/10.1145/3212480.3212487
https://doi.org/10.1145/3212480.3212487

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Johannes Feichtner, David Missmann, and Raphael Spreitzer

In this paper, we introduce a solution that enables such an anal-
ysis on iOS applications by addressing the following challenges.1

(1) Decompiling and simplifying machine code: The analysis of
64-bit binaries compiled for the ARMv8 architecture is error-
prone and tedious. Therefore, we transform the binary into
higher-level LLVM intermediate representation (IR) [37],
where all low-level CPU instructions have to be modeled
appropriately. This allows to re-use existing LLVM-based
tools, such as KLEE [10], PAGAI [31], and LLBMC [41].

(2) Language peculiarities: iOS applications are developed in
runtime-oriented languages such as Objective-C and Swift,
and the majority of control-flow decisions are made during
runtime. Instead of calling methods of objects directly or
through virtual method tables (vtables), this task is delegated
to a dynamic dispatch function in the Objective-C runtime
library. To recover a semantically correct control flow from
the binary, we reconstruct the hierarchies of classes, methods,
and types from binaries. This information allows to resolve
the target of a function call through the dispatch routine.

(3) Pointer analysis: Computing control flow and data dependen-
cies, as well as the identification of instructions and variables
that have an impact on a particular program statement, re-
quires information about where different variables (and CPU
registers) point to during execution. Since computing points-
to sets is an undecidable problem [3], we propose a solution
addressing the trade-off between the accuracy of program
slices and the runtime overhead.

By solving these challenges, we developed a framework that
allows inspecting 64-bit iOS binaries by reconstructing the cor-
responding control flows and data flows. Based on the Common-
Crypto library for iOS, we formulate and specify rules for the use
of cryptographic APIs, and we automatically test several hundred
closed-source apps regarding their compliance to these rules. Our
results indicate that the majority of apps use cryptographic APIs in
unintended ways and, thus, violate essential rules.

Contributions. The contributions are as follows:
(1) We introduce and develop the necessary building blocks for

a framework to analyze 64-bit iOS application binaries.
(2) We formulate the low-level properties required to identify

cryptographic misuse of security APIs on iOS.
(3) Based on several open-source applications, we iteratively

refine the framework to reduce the number of false positives.
(4) We apply our framework on more than 400 iOS applications

that rely on cryptographic APIs and identify security-critical
misconceptions in the majority of these applications.

Outline. In Section 2, we discusses related work. In Section 3,
we discuss the structure of iOS applications, program slicing, and
pointer analysis. Section 4 introduces our analysis workflow. In
Section 5, we explain binary decompilation. In Section 6, we describe
how to resolve pointer states and how to obtain an accurate call
graph. Section 7 elaborates on how we leverage this information
for program slicing and parameter backtracking. In Section 8, we
present security rules to detect common misconceptions, followed
by an evaluation in Section 9. Finally, we conclude in Section 10.

1The framework is available at: https://github.com/IAIK/ios-analysis

2 RELATEDWORK
The analysis of security aspects on mobile platforms has attracted
a lot of attention in the past years. A majority of publications in
this field focus on the Android ecosystem where the openness of
the platform promotes program inspection. Supported by the fact
that Dalvik bytecode in Android applications can be decompiled to
Java code, existing tools for static analysis are easily applicable [5,
6, 54]. Likewise, approaches for dynamic analysis [19, 50] enable
live information-flow tracking while an application is executed by
the Dalvik virtual machine. Tailored to their individual use-case,
most analysis-related works aim to disclose possible leaks of private
data [11, 13, 25, 57], identify malware [23, 24, 26, 44], or uncover
security deficiencies in applications [8, 14, 21, 22].

Among all related research, the work by Egele et al. [16] comes
closest to this paper. They evaluated Android applications regarding
their use of cryptographic APIs in unintended ways. Based upon
the Android reverse-engineering framework Androguard [4], a
control flow graph over all functions is derived. Subsequently, static
program slicing [55] is employed to inspect the parameters passed
to cryptographic operations. We elaborate a similar concept for
iOS. As there are no decompilers available for iOS binaries yet, we
introduce a generic decompiler transforming ARMv8 binaries to
LLVM IR code. With applications developed in Objective-C or Swift,
it is significantly harder to obtain a meaningful program control
flow on iOS compared to Android. In addition, the need for pointer
analysis and the reconstruction of information from the binary are
major differences that required new approaches to be pursued.

Although static binary analysis is a well-established practice,
only few contributions target the iOS platform. In [17], the authors
approach this field by studying privacy threats in iOS applications
using the disassembly of binaries. They create a control flow graph
and perform a reachability analysis to identify possible privacy
leaks. Other works [15, 36, 58] survey the usage of private APIs or
pursue a source-to-sink analysis using static and dynamic methods.

We use static slicing to extract a subset of the program affected
by a specific variable. Introduced by Weiser [55], the idea was to
describe dependencies between statements using data flow equa-
tions. Subsequent works extended the concept to Program and
System Dependency Graphs (PDG, SDG) [33, 42], defined as a
reachability problem. Agrawal et al. [1] presented a solution to cre-
ate program slices using PDGs that handle pointers and arrays in
intra-procedural programs. In [9], the supportive impact of pointer
analysis on program slicing has been underlined.

For a reliable analysis of data flows, it is inevitable to determine
what values are referenced and modified by pointers. Shapiro and
Horwitz [48] compared the precision of different pointer analysis
methods [3, 47, 49]. Of the three approaches, Andersen’s [3] was
the most precise but had a runtime of O (n3). Steensgard’s algo-
rithm [49] runs in almost linear time having less precise results.
The third algorithm [47] is a compromise between runtime and pre-
cision. The main difference between Andersen’s and Steensgard’s
algorithms is that Andersen uses so-called inclusion relations, while
Steensgard builds on equality relations.

Since iOS applications usually consist of a very large code base,
Andersen’s initial algorithm would lead to a poor overall perfor-
mance. However, various improvements [7, 28–30, 43] have been

https://github.com/IAIK/ios-analysis

Automated Binary Analysis on iOS – A Study on Cryptographic Misuse in iOS Apps WiSec ’18, June 18–20, 2018, Stockholm, Sweden

proposed to tackle this issue. Hardekopf and Lin [29] improved the
approach to an almost linear runtime while still providing results
similar to Andersen’s algorithm. In our work, we use the constraint
optimizations proposed in [28]. By merging the definitions of simi-
lar pointer variables, the input size for constraint solving becomes
smaller. In combination with [29], strongly connected components
in a graph are detected and get collapsed to a single node since they
form a cycle in which each node still points to the same locations.

3 BACKGROUND
In this section, we present background information about the struc-
ture of iOS applications, program slicing, and pointer analysis.

3.1 iOS Applications
iOS executables use the Mach-O file format, which allows a single
binary file to contain multiple Mach-O files for different CPU ar-
chitectures. Since 2013, new iOS devices are equipped with a 64-bit
ARMv8 CPU and it is required that applications are provided for this
architecture, which is why we focus on this particular architecture.
A Mach-O file is split into three regions:

Header: Identifies the file as Mach-O file and includes informa-
tion about the target CPU architecture.

Load Commands: Specifies the file layout and designated mem-
ory location of segments.

Data: Consists of different regions and sections that are loaded
into memory. The Dynamic Loader Info defines where dynamic
symbols have to be stored during execution.

We evaluate the Load Commands section to refer to the data located
in the subsequent region. The Data region itself contains all infor-
mation needed for execution, including the machine instructions.
However, the instructions alone are not sufficient to accurately
decompile the executable binary of an iOS application.

Method invocations are handled by a dynamic dispatch function
in the Objective-C runtime library, which requires the type of the
object and the name of the method to be called. Therefore, the
following sections in the binary play an essential role:

__objc_classlist: List of pointers to descriptions of classes in a bi-
nary. The pointers point to addresses of the section __objc_data.

__objc_data: Contains a pointer to the superclass and a pointer
to __objc_const for retrieving class infos.

__objc_const: Has details for every class, implemented methods
(name and memory location) and protocols, instance variables
and defined properties in the binary.

Dynamic Loader Info: Includes pointers to classes that are not
present in the binary, e.g., references to the Objective-C runtime
library. By traversing this structure, we manage to reconstruct
a complete class hierarchy.

During execution, applications can invoke externally defined
library functions using indirect symbols. Occurring as lazy or non-
lazy symbols, our analysis has to detect and handle these calls
correctly as they may create or modify data. Non-lazy symbols are
resolved when the binary is loaded using the binding information
stored within the Dynamic Loader Info section. In contrast, lazy
symbols are followed when they are first accessed.

The Mach-O file includes method signature definitions for all
contained Objective-C and Swift methods. The type definitions
for arbitrary methods are stored in a compressed way, prefixing
all objects with the universal identifier@. Method signatures for
protocol methods are stored with their complete signature. This
information supports a more precise call graph generation since
parameters, passed to protocol methods, are probably not allocated
in the code of the binary but included from other libraries. E.g. UI
protocol methods are called from within the UIKit framework. With-
out these definitions there would be no way to find out the types
of externally allocated parameters and the call graph generation
would lack calls made to these objects.

3.2 Program Slicing
Static slicing can be used to determine all code statements of a
program that may affect a value at a specified point of execution
(slicing criterion). The resulting program slices cover all possible
execution paths and allow conclusions to be drawn about the func-
tionality of the program. We adopt the algorithm of Weiser [55] to
create slices of LLVM IR code and to find paths from the origin of a
parameter to its use, e.g., in cryptographic functions.

Weiser presented an intra-procedural method that models the
data flow within a function using equations. Relevant variables and
statements are determined in an iterative manner. As summarized
by Tip [52], the algorithm consists of two steps:
1. Follow data dependencies: This step is executed iteratively, if

control dependencies are found.
2. Follow control dependencies: Includes relevant variables of

control flow statements. Step 1 is repeated for affected variables.
To create slices over multiple functions, the approach can be

extended to inter-procedural slicing in two steps: first an intra-
procedural slice of a function P is computed, followed by the gen-
eration of new slicing criteria for every function that calls P or
is called by P . In Weiser’s concept, the generation of new criteria
is described as DOWN (C) for the callers of P and as UP (C) for
functions that are called by P based on the slicing criterion C . Due
to the way how parameters are passed with ARMv8, this approach
is not immediately applicable to our use case (cf. Section 7).

3.3 Pointer Analysis
When identifying instructions and variables with an impact on
program statements, it is essential to also know where they might
point to during execution. Pointer analysis can be used to support
the slicing process with accurate information about pointer states.

Introduced by Andersen [3], pointer analysis is described as a
set-constraint problem in which a constraint systemC is created for
a given program. By solving the system, it is possible to determine
the locations a variable might point to during program execution.
All constraints are of the type a ⊇ b, which means that information
flows uni-directional from b to a. There are four different types of
constraints that may be added to C (see Table 1). In our work, con-
straint generation is done according to these types by identifying
patterns in the decompiled LLVM IR code.

Andersen defined a context-sensitive and a context-insensitive
version of his algorithm. While the former leads to more precise re-
sults by separating information originating from different paths, its

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Johannes Feichtner, David Missmann, and Raphael Spreitzer

Table 1: Constraints and their meaning [29]

Constraint type Meaning

vi ⊇ vj loc (vj) ∈ pts (vi)
vi ⊇ vj pts (vi) ⊇ pts (vj)
vi ⊇ ∗vj ∀v ∈ pts (vj) : pts (vi) ⊇ pts (v)
∗vi ⊇ vj ∀v ∈ pts (vi) : pts (v) ⊇ pts (vj)

time complexity is exponential [18, 56]. Therefore, context-sensitive
pointer analysis does not scale well for larger programs with a large
number of calling contexts. In the scope of our work, we prefer the
context-insensitive method for the computation of points-to sets.

Flow-sensitive pointer analysis takes the control flow of a pro-
gram into account and computes an individual points-to set for
each instruction. The flow-insensitive pendant disregards branches
and collects all information in a single points-to set. Hind and Pioli
[32] have shown that a flow-sensitive pointer analysis does not im-
prove the precision of the results if a context-insensitive algorithm
is used. In our solution we, thus, opted for the insensitive approach.

3.4 Cryptography on iOS
Applications rely on cryptography to protect sensitive data. On
iOS, the platform libraries CommonCrypto and Security expose APIs
to perform security-related operations. The first library provides
symmetric ciphers, hash functions, and a key derivation function
(PBKDF2). The second library provides functionality for asymmetric
ciphers, certificate handling, and keychain access.

All rules described later in this work have their origin (the point
where the slicing criterion is defined) in functionality of Common-
Crypto. The following three functions and their parameters play an
essential role in the definition of slicing criteria:
CCCryptorCreate: Comprises a family of similar functions that

initialize a CCCryptorRef reference. This object is then used to
perform encryption or decryption. CCCryptorCreate takes the
following parameters, relevant for our analysis:
• op: Defines if data is to be encrypted or decrypted.
• options: Specifies the cipher mode (ECB or CBC).
• key: A pointer to the key material.
• iv: A pointer to the initialization vector (IV).

CCCrypt: Similar to CCCryptorCreate functions, CCCrypt is a
self-contained alternative that expects all data and cipher-related
options to be passed immediately. The parameters of interest
for us are the same as for the CCCryptorCreate function family.

CCKeyDerivationPBKDF: Derives a key using PBKDF2. The
subsequent parameters are crucial for the security:
• password: The password as a C string.
• salt: A pointer to the salt value.
• rounds: The number of iterations.

4 SYSTEM DESIGN
In this section, we introduce our analysis concept and outline the
pursued steps. As depicted in Figure 1, the analysis starts with a
raw iOS binary. The outcome is a report that describes, for every
checked security rule, whether any violations have been detected.
If this is the case, the affected execution path(s) and the value of
the insecure parameter(s) are appended. The overall workflow can
be summarized as follows:

iOS Binary
Machine Instructions

Disassembler

ASM Instructions

Function Addresses
Decompiler

Objective-C runtime information Andersen‘s Pointer

Analysis

LLVM Intermediate Representation

External Functions

Definitions

Static Slicer

Backtrack

Figure 1: Analysis workflow of an iOS binary

1. Disassemble: After extracting the 64-bit ARMv8 binary from
theMach-O file, we leverage the disassembler of the LLVM frame-
work to generate assembly code.

2. Decompile: We translate the ARMv8 assembly code into LLVM
IR code by extending an existing decompiler framework with
instruction semantics for ARMv8.

3. Pointer Analysis: The points-to sets are computed for all point-
ers using an enhanced context-insensitive approach that scales
well for iOS applications of any size.

4. Static Slicing: Relevant segments are identified in LLVM IR
code based on the slicing criteria derived from the predefined
security rules.

5. Parameter Backtracking: All execution paths a parameter can
take are backtracked to the slicing criterion. Thereby, we verify
whether encountered statements meet our security rules.

Except for the initial disassembly step, we contribute new ap-
proaches and augment existing frameworks. In the subsequent
sections of this paper, our solutions are explained in detail.

5 DECOMPILATION TO LLVM IR
In this step, we translate 64-bit ARMv8 binaries into LLVM IR code.
The aim is to obtain a simpler representation that still models a
semantically correct control flow and data flow of the application.

The LLVM compiler frontend takes source code as input. After
the code has been fully tokenized, parsed, and analyzed, LLVM IR
code is emitted. The compiler backend is then responsible to opti-
mize it, assemble machine code and link the resulting object. Within
this process, LLVM tailors the output to a specific CPU architec-
ture using the corresponding register and instruction descriptions.
While the former specifies the processor’s register types and rela-
tions, the latter includes pattern definitions used to select machine
instructions in place of IR instructions during code generation [39].

In order to decompile binaries, we apply the patterns in the op-
posite direction. Therefore, we build on the reverse-engineering
framework Dagger [2]. In contrast to similar approaches [51, 53], it
extends LLVM and relies on instruction semantics [38] to translate
machine instructions to LLVM IR code based on target descriptions
of registers and instructions. The semantics describe the differ-
ent types of operands a machine instruction can take and what
operations have to be applied to get an equivalent in LLVM IR code.

For most machine instructions, semantics can be generated from
the descriptions. However, since not all instructions necessarily

Automated Binary Analysis on iOS – A Study on Cryptographic Misuse in iOS Apps WiSec ’18, June 18–20, 2018, Stockholm, Sweden

have a counterpart in LLVM IR, we manually supplemented missing
definitions for the 64-bit ARM architecture. The decompilation
process is described in Appendix A in more detail.

The ARMv8 instruction set knows various control flow state-
ments that all have to define a target where the branch should end
up. While for most instructions the address is statically defined, the
unconditional branch statements BR, BLR, and RET read the desti-
nation from a register whose value cannot be determined during
decompilation. As a remedy, we perform a pointer analysis on the
register and then update the branch targets in the control flow.

Function calls (BL and BLR instruction in ARMv8) are translated
to the call instruction in LLVM IR. Passing parameters to functions
is done by storing values in registers and/or on the stack [40].
Further steps are not required since the called function retrieves
the values from the registers and the stack via the register set. This,
however, means that we do not have information about parameters
or return values. As static analysis requires this information to
reconstruct the data flow between functions, we have to restore the
missing type information from the binary (see Section 7.1).

5.1 Recovering Lost Information
During compilation, the LLVM backend strips function prototypes,
local variables, and other type information from the LLVM IR code.
Without this knowledge, it is non-trivial to generate a valid call
graph for use with static analysis. In this section, we describe how
the needed information can be reconstructed from the binary.

5.1.1 Intraprocedural Control Flow. Grouping statements into
basic blocks helps to understand the control flow in a function.
Branch instructions always indicate the exit point of one basic
block and point to succeeding statements. Since they are referenced
by their instruction offset in the binary, we can leverage this address
to unambiguously find the entry points of the subsequent basic
blocks. The immediate predecessors of entry points can then be
set as exit instructions of basic blocks. As a result, we obtain an
accurate control flow graph from the basic blocks. Without the
binary addresses, successors would not always be clearly visible.

5.1.2 Function Parameters and Return Values. Knowing about
these definitions is essential for the data flow analysis. As function
prototypes are completely removed during compilation, we can
only make assumptions based on the calling convention [40]. A
function parameter is assumed if a value is read from a memory
location where a parameter may have been stored previously. To
identify these locations, we traverse the control flow graph from the
entry point to the load instruction. A parameter is also assumed if
no instruction is found that stores a value to a location.

To identify return values, the control flow graph is not traversed
from the function entry point but from the call instruction to
which will be returned after executing the function.

5.1.3 External Symbols. iOS applications include placeholders
for symbols that refer to external libraries. At runtime, the place-
holders are replaced with the correct associations from the loaded
libraries. For the purpose of static analysis, we can imitate this
behavior and store a reference to a symbol’s name and its library
association within the decompiled code.

5.2 Implementation
As the Dagger framework is only capable of translating x86 binaries
to LLVM IR, we have extended it with the definition of instruction
semantics for 64-bit ARMv8. By also considering specifics of iOS
binaries, we succeeded in modeling the correct control flow and
can complement the subsequent data flow analysis with accurate
type information. In the following, we highlight some changes to
Dagger that were made to optimize further analysis.

5.2.1 Registers. Dagger uses the register description of the CPU
to create a data structure which simulates internal storage. How-
ever, in practice, registers of an ARMv8 CPU overlap with the
LLVM definitions and storing multiple sub-registers in a single
super-register will lead to difficulties when computing data de-
pendencies. Thus, we modified Dagger’s model, such that a single
super-register will now only store the value of exactly one physical
register. Originally, the largest super-registers contained the values
of four physical registers and each of them is stored in exactly four
different super-registers. This means that three values of each of
the largest super-registers can be removed and no data is lost.

If an instruction accesses multiple physical registers using a
super-register, which now contains only the data of a single physical
register, multiple super-registers need to be merged into a single
value which is then used by the translated instructions. Modifying
Dagger’s approach to this solution still keeps the data stored in
registers consistent while allowing an easier computation of data
dependencies of a super-register.

5.2.2 Non-Volatile Registers. The content of these registers must
be preserved across function calls (callee-saved registers). Although
the callee accesses these values only for saving and restoring them,
this operation causes data dependencies between the caller and
callee. Since the values are not used for anything else, we can
optimize the code by cutting these data dependencies.

5.2.3 Tail Calls. In ARMv8, a branch-and-link (BL) instruction is
replaced with branch (B) if call is the last instruction of a function
before returning to the caller. Since branch cannot leave the scope
of a function in LLVM IR, Dagger replicates the target’s code to the
current function. This leads to a wrong call graph as code inlining
prevents that an edge is added for the call. We resolve this issue
by checking whether the target address of a branch instruction is
outside the function body. In that case, we replace the tail call with
a regular call and return statement.

6 POINTER ANALYSIS
Pointer analysis is required to support the subsequent slicing step
with information about pointers and to compute an accurate call
graph that is necessary for data flow analysis. We rely on context-
and flow-insensitive constraint generation with a focus on LLVM
IR and the characteristics of Objective-C (and implicitly Swift).

6.1 Iterative Constraint Generation
The algorithm presented by Andersen [3] generates constraints
once for each instruction, which only works if all values are al-
ready provided within an instruction. However, in case of function
pointers and calls to Objective-C methods, points-to knowledge

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Johannes Feichtner, David Missmann, and Raphael Spreitzer

is required before being able to process these calls. Therefore, we
adapted the constraint generation process to handle call instruc-
tions with pointers in an iterative manner (cf. Appendix B.1).

Focusing on the C language, Andersen’s analysis does not cover
an important feature that occurs in decompiled code: All memory
accesses are done by converting an integer to a pointer using the
inttoptr instruction. Without considering these instructions, con-
straint generation would produce a points-to set with all pointers
referencing the abstract location Unknown. We modify the rules for
constraint generation to cover the inttoptr instruction. Based on
the constraints by Hardekopf and Lin [29] (see Table 1), we identify
patterns in the decompiled code for all sources of inttoptr.

Binary offsets are accessed by inttoptr via static addresses. This
is the simplest memory access since the operand of inttoptr
includes the source address (constant integer value).

Heap addresses are created via memory allocation functions (e.g.
malloc). Since the return values describe an abstract location, it
can immediately be used for pointer analysis.

Stack memory is usually accessed by adding a static offset to the
stack pointer (or frame pointer). However, different instructions
that access the same location on the stack are not easily identifi-
able since a separate pointer is created for each of them. Thus,
we have to match stack locations with all variables which might
contain the same value during execution. This is done by de-
termining all operations that use the stack pointer in an add or
sub operation with a constant integer. As these operations are
mainly responsible to create the stack address for a subsequent
use with inttoptr, we can match different pointers to the same
stack location.

6.2 Objective-C Peculiarities
As iOS applications are compiled from source code in the runtime-
oriented languages Objective-C and Swift, the LLVM frontend
rewrites direct method invocations to use a dynamic dispatcher
function instead. objc_msgSend() is a function in the Objective-C
runtime library, responsible to decide at runtime what method to
call. Therefore, it takes two parameters that specify the class or
object, and the name of the method to call. Both arguments (X0 and
X1 in ARMv8) hold pointers to locations in the binary where the
actual values are retrieved from. Consequently, this also affects the
call graph generation which naturally fails to add edges if neither
type information nor selector names are defined in the LLVM IR
code. We, thus have to restore the correct call graph by adding
edges for the methods referenced in calls to objc_msgSend. The
details can be found in Appendix B.2.

Other language-specific peculiarities that need special process-
ing include the Objective-C features Blocks and Fast Enumeration.
For both cases, constraint generation has to be adapted to identify
the instructions that access locations on the stack.

7 STATIC SLICING
The purpose of static slicing is to compute all code segments that
affect a slicing criterion. We adopt the algorithm of Weiser [55] to
work with LLVM IR code by considering characteristics of ARMv8.

As parameters can be passed using both the stack or registers
on ARMv8, Weiser’s approach does not immediately work for de-
compiled LLVM IR code: Each function has exactly one formal
parameter that represents the register set. Since this set is the same
for all functions, no parameters could be substituted to generate a
new set of slicing criteria when a function is called. Our solution
for this issue is to extend the collection of all relevant variables
ROUT (i) with information about load and store operations that
read or modify registers before a function call.

Let S (v,r) be a store instruction that stores a variable v to the
register r and L(v,r) the corresponding load instruction. We now
define STORE (i) to return the set of last variables that were stored
to a register before the instruction i and LOAD (i) to return the set
of first variables, loaded from a register after the instruction i:

STORE (i) =
{
(v,r) | ∃ Si (v,r) →

∗
CFG i,

∄ Li (v,r) →
∗

CFG i Sj (v
′,r) → ∗

CFG i
} (1)

LOAD (i) =
{
(v,r) | ∃ i → ∗

CFG i Li (v,r),

∄ i → ∗
CFG Lj (v

′,r ′) ∗
CFG Li (v,r)

} (2)

Using these sets, parameter substitution from formal to actual pa-
rameters is possible even if all functions use the same register set.
If the stack is used for parameter passing between functions, inter-
procedural slicing is achieved using the points-to analysis. If a
stack parameter is a relevant variable, the corresponding memory
location will be the same in the caller and callee functions.

7.1 Restoring Missing Type Information
A conclusive data flow analysis requires knowledge about all object
types. After recovering function parameters and return values in
the decompilation step, type information is still missing for instance
variables and protocol methods. If available in the code of the binary,
the type definitions can easily be resolved (see Section 3.1). However,
if instance variables are allocated by a function of an external library,
finding their type information can be a challenging task.

Instance variables are always accessed by loading an offset from
an individual static address in the binary. This enables us to find all
instructions that refer to a particular variable and a single abstract
location [47] can be specified. Similarly, the binary has no precise
type information for parameters of methods that are declared by
a protocol in Objective-C or Swift. Although creating abstract lo-
cations for each parameter does not allow for a precise pointer
analysis, it is still possible to identify calls made using these objects.

7.2 Parameter Backtracking
Program slices summarize all relevant statements and variables
that influence a certain parameter. This information can now be
split into single execution paths. For the verification whether a
parameter complies with our security rules, we use backtracking
to evaluate all paths a variable can take until it is first defined. In
case a rule violation is detected, we are able to pinpoint the affected
information flow and can highlight problematic statements.

In the following, we explain our solution to find predecessors,
isolate execution paths, and how to avoid cycles while backtracking.

Automated Binary Analysis on iOS – A Study on Cryptographic Misuse in iOS Apps WiSec ’18, June 18–20, 2018, Stockholm, Sweden

7.2.1 Finding Predecessors. The static single assignment form
(SSA) of LLVM IR already provides a simple way of backtracking
instructions that do not use pointers for memory access. However,
if a value is read from a location referenced by a pointer, it is not
possible to determine the preceding store instruction by inspecting
only the statement. For program slicing, it is necessary to add the
location to the relevant set and traverse the control flow graph
backwards to find a modification of this location. For backtracking
we need to specify more than just the relevant location.

Whenever a location l is added to the relevant set, we add
the statement s , which induced this location, to a separate set
RSources (i,l). It contains all statements that added the relevant
variable l at statement i and allows to match modifications with
the corresponding read instructions. How these sets are defined
for each instruction and the way the sources of relevant variables
are propagated through the program is defined below. Similar as in
the definitions for static slicing, the instruction j is an immediate
successor of the instruction i (i →CFG j):

RSources (i,l) = {i | i ∈ SC , l ∈ REF (i)}

∪ {i | i ∈ RSources (j,l), i < SC }
(3)

With this information, it is now possible to determine the preceding
modifications of a location, if a value is accessed using a pointer.
If the statement r reads a value from a location l , the predecessors
for backtracking the read value are defined as:

Pred ′(r) = {s | r ∈ RSources (s,l), l ∈ DEF (s)} (4)

The set of predecessors that includes all instructions, which modify
a referenced variable can then be described as:

Pred (i) = {s | r ∈ RSources (s,l), l ∈ DEF (s), l ∈ Loc}

∪ {op | op ∈ Operators (i), op ∈ Instructions}
(5)

7.2.2 Extracting Execution Paths. Using the Pred (i) set of an in-
struction i we get all predecessors of a statement. All possible paths
of a value v to its origin can be seen as graphG = (V ,E). The set of
vertices V contains all instructions of the program and the edges E
are defined by adding all reachable predecessors recursively:

E (0) = {(v, j) | j ∈ Pred (v)}

E (k) = {(i, j) | (j, k) ∈ E (k−1) , i ∈ Pred (j)}
(6)

7.2.3 Avoiding Cycles. Whenever parts of the code are executed
inside a loop, cyclic dependencies may occur in the execution path.
To avoid infinite loops during analysis, we discard the branch of a
path immediately if an instruction is found that is already contained
in the path. This means that branches without cyclic dependencies
are still tracked and will lead to the initial definition of a value.

7.3 Implementation
We implemented program slicing and parameter backtracking for
LLVM IR code. The slicing step is required to integrate with points-
to information, and the subsequent backtracking step has to support
the call graph restored during pointer analysis.

We build on LLVMSlicer [34], an implementation of Weiser’s al-
gorithm for static slicing, which also includes Andersen’s algorithm
for pointer analysis. While this works fine for smaller programs, it
leads to a poor performance for iOS applications that usually consist

of a very large code base.We tackle this issue by replacing the imple-
mentation with constraint optimization techniques [27] proposed
by Hardekopf and Lin [28]. Taking up this idea, we look for pointers
that have an equivalent points-to set and merge their representa-
tions. Constraint solving is optimized by detecting and collapsing
strongly connected components in the constraint graph [29].

We further augment the slicer with parameter backtracking to
extract single execution paths. Subsequently, we can verify whether
the paths meet or violate predefined security-critical conditions.

8 DETECTING CRYPTOGRAPHIC MISUSE
In this section, we present a set of security rules tailored to detect
common security-critical implementation flaws in iOS applications.

8.1 Rule Checking
Using parameter backtracking, we obtain all execution paths that
affect a certain slicing criterion. To verify whether or not a path
violates a specific rule, each element is tested against predefined
conditions. In case a problematic value is identified, the affected
subpath and slicing criterion are written to a report.

The rules are designed using JSON definitions and allow for easy
extensibility. It is also possible to group similar functions, such as
those belonging to the CCCryptorCreate family.

8.2 Evaluating Security Properties
In this work, we focus on cryptographic functionality provided by
the CommonCrypto library, i.e., the default crypto library on iOS.
We consider custom crypto implementations out of scope, as crypto
should not be implemented by developers themselves anyways.

Egele et al. [16] described common rules in cryptography that
have to be considered by Android developers in order to avoid secu-
rity issues, and they also summarize possible security implications.
We define similar rules based on the anatomy of CommonCrypto
methods to detect cryptographic misuse in iOS applications.

Rule 1: Do not use ECBmode for encryption. In ECB mode,
data blocks are enciphered independently from each other and
cause identical message blocks to be transformed into identical
ciphertext blocks. Consequently, data patterns are not hidden and
confidentiality may be compromised. By default, iOS prefers CBC
mode. ECB mode is only used if the developer explicitly specifies
to use this mode of operation. Thus, for this rule to be satisfied,
CCCrypt() or CCCryptorCreate() must not be invoked with the
flag kCCOptionECBMode being set as option.

Rule 2: Do not use a non-random IV for CBC encryption.
Constant or predictable IVs lead to a deterministic and stateless
encryption scheme that is susceptible to chosen-plaintext attacks. If
CBC mode is selected for encryption, the developer has to provide
a cryptographically secure IV. If no IV is specified at all, the cipher
uses an all-zeros IV, which is at least as bad as using a constant IV.

We consider the rule to be fulfilled, if an IV usedwith CCCrypto(),
CCCryptorCreate(), or CCCryptorCreateWithMode() is gener-
ated by a cryptographically secure random number generator. This
can either be CCRandomGenerateBytes() in CommonCrypto or
SecRandomCopyBytes() in the Security library.

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Johannes Feichtner, David Missmann, and Raphael Spreitzer

Rule 3: Do not use constant encryption keys. Keeping en-
cryption keys secret is a vital requirement to prevent unrelated par-
ties from accessing confidential data. Statically defined keys clearly
violate this basic rule and render encryption useless. A key used for
symmetric encryption with CCCrypto(), CCCryptorCreate(), or
CCCryptorCreateWithMode() has to originate from a non-constant
source. Analogous to keys, this rule can also be applied to passwords
that are passed to CCKeyDerivationPBKDF().

Rule 4: Do not use constant salts for PBE. A randomly cho-
sen salt ensures that a password-based key is unique and slows
down brute-force and dictionary attacks. To fulfill this rule, a call to
the key derivation function CCKeyDerivationPBKDF() must not
be provided with a salt that depends exclusively on constant values.

Rule 5: Do not use fewer than 1,000 iterations for PBE. A
low iteration count significantly reduces the costs and computa-
tional complexity of table-based attacks on password-derived keys.
To satisfy this rule, we expect applications to specify more than
1,000 rounds as an argument for CCKeyDerivationPBKDF().

Rule 6: Do not use static seeds to seed SecureRandom. If a
PRNG is seeded with a statically defined value, it will produce a
deterministic output which is not suited for security-critical appli-
cations. As the platform-provided APIs do not support seeding the
underlying PRNG, this rule cannot be violated on iOS.

9 EVALUATION
The goal of this evaluation is twofold. First, by manually investi-
gating the output of our framework and the source code of real-
world applications, we identify and fix possible weaknesses in our
approach. Second, applying our tool on a large number of closed-
source applications, we identify security-critical misconceptions.

9.1 Method and Dataset
9.1.1 Manual Analysis. The objective of this step was primarily

to test whether all components interact appropriately with each
other and to refine the implementation where needed. Therefore,
we applied the framework to open-source applications and checked
the obtained results against the source code. Besides identifying
opportunities for improvement, we also benefited from seeing what
our security rules were able to (not) cover in a real-world scenario.

For this analysis, we downloaded 15 open-source applications
from GitHub that use CommonCrypto for encryption. 8 of them
were password managers, intended to protect user-entered cre-
dentials by means of cryptography. The remaining applications
belonged to different categories, aimed at providing secure e-mail,
data container, cloud storage, or messenger functionality.

We supplied the applications to the framework and analyzed
them with respect to the defined security rules. We manually ob-
served the analysis and improved the framework, e.g., by supple-
menting new instruction semantics that were not covered by the
decompiler yet. After checking all security rules, the framework
generated a report including all paths to statements that modified a
specific parameter. We then verified and iteratively refined the ac-
curacy of the analysis by studying the applications’ source code. To
facilitate this process, we leveraged a utility in Apple’s IDE Xcode
that enables the generation of call hierarchies for selected functions.

A hierarchy is basically a subgraph of the call graph, containing
only the nodes from which the targeted function was reached.

9.1.2 Automated Analysis. The objective of this step was to
investigate whether iOS application developers know how to apply
cryptographic APIs correctly. Inspired by the work of Egele et al.
[16], we performed a similar empirical study for iOS applications.

We downloaded 634 free applications from the official iOS App
Store. We focused on applications where the use of cryptography
seems indispensable, e.g., password managers, (secure) messengers,
cloud storage, and data containers, with more than 10,000 installa-
tions. Due to the fact that most were closed-source, we had to rely
on the developer-provided descriptions to select those which might
employ cryptography. After fetching them via iTunes, we used the
tool Clutch [35] on a jail-broken iPhone to decrypt the applications.
It turned out that 495 (78%) of the crawled applications included
calls to the cryptographic API and were relevant for further anal-
ysis. Interestingly, the remaining set of 139 applications (without
CommonCrypto) also included password managers and applications
where the use of cryptography seemed appropriate. Aside from a
faulty or absent implementation, this could be caused by the use of
third-party libraries that implement crypto routines themselves.

After extracting all applications, we checked whether their li-
brary bindings indicate the usage of CommonCrypto. If this con-
dition was fulfilled, we sequentially supplied the ARMv8 binaries
to our framework. By inspecting the generated output reports, we
ensured that any claimed security rule violation was indeed the
consequence of a problematic execution path.

False Positives and False Negatives. Since our framework cannot
miss calls to CommonCrypto methods, we avoid false negatives.
In contrast, due to the nature of closed-source applications, we
cannot formally exclude the existence of false positives. However,
by manually examining the analysis reports, we also minimized
false positives that could have occurred, e.g., if a backtracked value
was a parameter to a function that had never been invoked.

9.2 Results
In total, we evaluated 495 closed-source and 15 open-source applica-
tions that included calls to CommonCrypto. Iteratively refining the
components during manual analysis ensured that all open-source
applications could be decompiled and inspected. Afterwards, for a
total of 417 + 15 = 432 applications, the analysis workflow termi-
nated successfully. As summarized in Table 2, the analysis of the
remaining 78 closed-source applications failed due to one of three
reasons. First, 7 applications contained only binaries for the ARMv7
platform, which are considered as deprecated by Apple and, hence,
are not supported by our decompiler. Second, 9% or 46 applications
could not be decompiled due to missing instruction semantics. Third,
for 25 applications constraint solving ran out of memory.

9.2.1 Automated Analysis. Of 417 successfully inspected closed-
source applications, we found that 82% or 343 applications violate
at least one rule. Table 3 summarizes our observations of violated
security rules. We discuss the findings in more detail below.
Rule 2: Donot use a non-random IV forCBCencryption.This
was the most commonly violated rule: 69% or 289 applications
used a cryptographically insecure IV with CBC encryption. Among

Automated Binary Analysis on iOS – A Study on Cryptographic Misuse in iOS Apps WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Table 2: Reliability for Closed-Source Applications

Count [%]

Downloaded from iOS App Store 634
No CommonCrypto calls 139 22%
With CommonCrypto calls 495 78%

Binary only for ARMv7 7 1%
Not decompilable 46 9%
Out of memory 25 5%

Analyzable with CommonCrypto calls 417 84%

Table 3: Violations of security rules

Violated Rule # Applications [%]

Rule 2: Uses non-random IV 289 69%
Rule 3: Uses constant encryption key 268 64%
Rule 1: Uses ECB mode 112 27%
Rule 4: Uses constant salts for PBE 72 17%
Rule 5: Uses < 1,000 iterations (PBE) 49 12%

Applications with ≥ 1 rule violations 343 82%
No rule violation 74 18%

Table 4: Origin of constant secrets

Violations

Constant string used as encryption key 193
Constant password for PBKDF2 84
Hash value of constant string 18
Secret retrieved from NSUserDefaults 14
Constant key data 6

Applications violating rule 3 268

them, 92% or 265 applications specify a constant or NULL IV. The
remaining 24 used the hash value of a constant string as IV.
Rule 3: Do not use constant encryption keys. 64% or 268 appli-
cations use constant data as keymaterial. Although not immediately
used for encryption, we also consider constant passwords passed
to a key derivation function as misuse. Table 4 highlights the prove-
nience of the key material. The total number of violations is higher
than the number of applications due to the fact that some applica-
tions violate the rule multiple times. 193 keys were plain C strings
that did not undergo any form of key derivation.
Rule 1: Do not use ECB mode for encryption. Overall, we
found 27% or 112 applications that explicitly declared to use this
mode of operation for symmetric encryption.
Rule 4: Do not use constant salts for PBE. We identified that
17% or 72 applications specified constant salt values as input to the
key derivation function. This effectively undermines the protection
of password-based encryption against table-based attacks.
Rule 5: Do not use fewer than 1,000 iterations for PBE. This
was the least violated rule with only 12% or 49 applications applying
less than 1,000 rounds in key derivation functions. Among them,
59% or 29 applications used exactly 1 round, 14% or 7 applications
specified 100 iterations. The remaining 13 applications used other
values below the threshold of 1,000.

9.2.2 Manual Analysis. While most rule violations were found
where expected, the analysis also pointed out deficiencies in our
concept. Relying on a context-insensitive pointer analysis means
that the points-to information of a pointer is independent of its

calling context and might also include wrong locations. This further
results in spurious paths being followed during parameter back-
tracking. Nevertheless, besides wrong values (or values belonging
to a different calling context), the output will also always include
an actually correct execution path.

Subsequently, we exemplify the analysis process based on one—
the Damn Vulnerable iOS App (DVIA) [45]—of the 15 open-source
apps. We explain the security-critical weaknesses and contrast the
source code with the results of our framework. DVIA is designed
for penetration testing and includes common mistakes on purpose.
Among other issues, it contains the kind of cryptographic misuse
we are looking for. However, DVIA does not invoke functions of
CommonCrypto directly but relies on a wrapper (RNCryptor [46]).
Nevertheless, violations should be detected by our framework.

Constant IV and Salt Value. Our framework identified mul-
tiple paths that violate rules 2 and 4. In both rules, the input pa-
rameter should have been generated using a cryptographically se-
cure random number generator. DVIA, however, calls +[RNCryptor
randomDataOfLength:], a function belonging to RNCryptor. For all
function calls using an IV or salt value, the report included three sep-
arate paths, of which only the one using SecRandomCopyBytes()
was considered secure. Verifying these results manually revealed
that RNCryptor only relied on SecRandomCopyBytes() if this func-
tion was actually defined, which is always the case on iOS devices.
However, due to the nature of static analysis, we also found two al-
ternative execution paths that tried to read bytes from /dev/random.
This could fail due to two reasons: first, if the file descriptor was
not available, and second, if the number of bytes to read was zero.
In both cases, the IV or salt would have consisted of NULL values.
Although this represents a correctly identified rule violation, its
security impact is negligible. Based on this observation, we learned
that reports generated during the automated process should be
manually inspected in order to confirm critical rule violations.

Constant Password for PBE. The automated analysis of DVIA
further reported two different origins of a password used for key
derivation. One path ends up at a call to -[UITextField text],
which indicates that the password was retrieved from a text field.
This signifies no rule violation and was also not detected as such. At
the end of the second path, a hard-coded string was found. As high-
lighted in Listing 1, the constant Secret-Key was directly passed to
RNEncryptor where it was subsequently used as a password input
for CCKeyDerivationPBKDF(). Our framework correctly uncov-
ered this rule violation.

Listing 1: Constant password in DVIA
NSData ∗ enc ryp tedDa ta = [RNEncryptor enc ryp tDa ta : d a t a

w i t h S e t t i n g s : kRNCryptorAES256Se t t ings
password :@"Secret -Key"

e r r o r :& e r r o r] ;

As can also be seen in the listing, the argument used as second
parameter is an object with the name kRNCryptorAES256Settings.
If set, RNCryptor performs the key derivation with 10,000 rounds.
With regard to the corresponding rule, this does not represent a
misuse, as has also been correctly determined by our framework.

Dead Code. The automated analysis reported rule violations
by a function that was included in the binary but never called.
Related to the generation of an IV for symmetric encryption, it

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Johannes Feichtner, David Missmann, and Raphael Spreitzer

also used the method +[RNCryptor randomDataOfLength:] to
generate random data and caused the same paths to be emitted.

9.3 Limitations
As a result of analyzing 15 open-source applications by manual and
automated means, we identified possible limitations that may affect
the reverse-engineering process. In the following, we summarize
the most relevant drawbacks we discovered during analyses.

Polymorphism. Under certain conditions, the pointer analysis
might follow implausible function calls because of polymorphism.
As a result, the call graph contains spurious edges that could have
a negative influence on the accuracy of parameter backtracking. As
exemplified in Listing 2, depending on someCondition, object has
either type ClassA or ClassB. However, determining the actually
used type can only be done inside the branches of the allocation
statement. Due to the fact that our approach for pointer analysis is
flow-insensitive, the points-to set of the subsequent variable foo
includes both locA and locB . Assuming an instance method is now
called using this variable, both types have to be considered.

Listing 2: Pointer Analysis with Polymorphism
@class Ba s eC l a s s {
− (void) foo ;
− (void) f o oba r ;

}
@class ClassA : Ba s eC l a s s { }
@class C la s sB : Ba s eC l a s s {
− (void) ba r ;

}
void someFunct ion () {

B a s eC l a s s ∗ o b j e c t = n i l ;
if (someCondi t ion) {

o b j e c t = [[ClassA a l l o c] i n i t] ; / / { locA }
} else {

o b j e c t = [[C la s sB a l l o c] i n i t] ; / / { locB }
}
[o b j e c t foo] ; / / { locA , locB }

}

To represent polymorphism more accurately in the call graph, we
would have to use a flow-sensitive pointer analysis. Practically, this
is rarely an issue as both allocations would have to be assigned to
the same variable and parameter backtracking only considers paths
where a variable of interest is modified. Still, in theory, it could
happen that a spurious path with a wrong callee is tracked.

C Arrays. By using Andersen’s field-insensitive solution [3]
for pointer analysis, different fields of an array or struct cannot be
distinguished. Although, in general, this causes less precise analysis
results, it usually does not affect parameter backtracking where
arrays are passed to functions using only their base pointer.

User Interface Elements.Another identified issue affects miss-
ing type information that results in an incomplete call graph. As a
consequence, the data flow between functions cannot entirely be
modeled. This circumstance is primarily caused by calls to exter-
nal libraries that cannot be resolved, e.g., in case of user interface
events. Since we also cannot determine the function signatures and
parameter types, backtracking them becomes infeasible.

Defining event listeners and actions for UI elements works either
by creating the user interface directly in the code or using the
Interface Builder in Xcode. With the latter option, elements are
stored in .nib files that are parsed during application start. As our
analysis only considers information retrieved from the binary, it

is not aware of user interface actions declared elsewhere. In the
context of static slicing, this might lead to situations where, e.g., an
input parameter to the function CCKeyDerivationPBKDF() cannot
be fully backtracked due to missing declarations of the associated
UITextField object. Nevertheless, user input represents dynamic
information and cannot be captured by static analyses anyways.

9.4 Discussion
In themanual evaluation scenario, we focused on refining the frame-
work to cope with closed-source iOS applications. While most of
the rule violations were found where expected, we also discovered
cases that could not be handled correctly. In a context-insensitive
pointer analysis, the points-to set of a variable is always indepen-
dent of the underlying calling context. Consequently, parameter
backtracking might traverse and report spurious paths. With regard
to the overall analysis workflow, we recognized that it is crucial to
restore function signatures and types from the binary during the
decompilation step, to facilitate further analysis.

The automated analysis of closed-source applications revealed
that 82% were subject to at least one security-critical implemen-
tation flaw. Besides these findings, inspecting the execution paths
in all reports also revealed that specific rule violations often result
from a similar misunderstanding of the intended API usage, perhaps
due to insufficient documentation.

Alternatively to specifying the number of iterations for key
derivation explicitly, we identified applications that rely on the
system-provided method CCCalibratePBKDF() to compute the
number of rounds with respect to the current device. Likewise,
if RNCryptor was used as a wrapper for CommonCrypto, the num-
ber of rounds was typically set to 10,000 (the default setting).

Related to constant encryption keys, we repeatedly noticed an
execution path that transformed a password to a keywithout using a
genuine derivation function. Thereby, a password string of arbitrary
length was either truncated to the block size of the used cipher or if
too short, filled up with zero bytes. This behavior did not violate our
rules and, thus, was also not reflected in the previously presented
results. Still, it significantly weakens security by facilitating attacks
on the encryption key.

10 CONCLUSION
A rising number of iOS apps claim to protect sensitive data bymeans
of encryption. However, since the source code of most applications
is not available, it remains unclear how cryptographic APIs have
been employed. In this work, we developed a multi-step approach
to facilitate such an analysis on iOS platforms. Instead of inspecting
a low-level representation of a binary, we proposed a solution for
a generically applicable decompiler that translates 64-bit ARMv8
binaries to LLVM IR code. By reconstructing lost information from
the binary, we are able to precisely model control and data flow
graphs for use with program slicing and parameter backtracking.

Based on this framework, we analyzed popular iOS applications
in order to detect common misuse of security-critical APIs. We
observed that 343 out of 417 investigated applications violate at
least one security rule. This result does not only highlight the
viability of our solution but also underlines that cryptographic
misuse is a common issue in iOS applications.

Automated Binary Analysis on iOS – A Study on Cryptographic Misuse in iOS Apps WiSec ’18, June 18–20, 2018, Stockholm, Sweden

REFERENCES
[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. 1991. Dynamic

Slicing in the Presence of Unconstrained Pointers. In Symposium on Software
Testing and Analysis – ISSTA 1991. ACM, 60–73.

[2] Ahmed Bougacha. n. d.. dagger – Binary Translator to LLVM IR. https://github.
com/repzret/dagger. (n. d.). Accessed: February 2018.

[3] L. O. Andersen. 1994. Program Analysis and Specialization for the C Programming
Language. Ph.D. Dissertation. DIKU, University of Copenhagen. (DIKU 94/19).

[4] Androguard. n. d.. Reverse engineering, Malware and goodware analysis of An-
droid applications. https://github.com/androguard/androguard. (n. d.). Accessed:
February 2018.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Programming Language Design and Imple-
mentation – PLDI 2014. ACM, 259–269.

[6] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012.
Dexpler: converting Android Dalvik bytecode to Jimple for static analysis with
Soot. In State of the Art in Java Program Analysis – SOAP. ACM, 27–38.

[7] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie J. Hendren, and Navindra Umanee.
2003. Points-to analysis using BDDs. In Programming Language Design and
Implementation – PLDI 2003. ACM, 103–114.

[8] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the App is That? Deception and
Countermeasures in the Android User Interface. In IEEE Symposium on Security
and Privacy – S&P 2015. IEEE Computer Society, 931–948.

[9] David Binkley andMarkHarman. 2004. A Survey of Empirical Results on Program
Slicing. Advances in Computers 62 (2004), 105–178.

[10] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Symposium on Operating Systems Design and Implementation – OSDI 2008.
USENIX Association, 209–224.

[11] Patrick P. F. Chan, Lucas Chi Kwong Hui, and Siu-Ming Yiu. 2012. DroidChecker:
Analyzing Android Applications for Capability Leak. In Security and Privacy in
Wireless and Mobile Networks – WISEC 2012. ACM, 125–136.

[12] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and
Christos Xenakis. 2015. Evaluation of Cryptography Usage in Android Applica-
tions. In Bio-inspired Information and Communications Technologies – BICT 2015.
ICST/ACM, 83–90.

[13] Xin Chen and Sencun Zhu. 2015. DroidJust: Automated Functionality-aware
Privacy Leakage Analysis for Android Applications. In Security and Privacy in
Wireless and Mobile Networks – WISEC 2015. ACM, 5:1–5:12.

[14] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
2010. Privilege Escalation Attacks on Android. In Information Security – ISC 2010
(LNCS), Vol. 6531. Springer, 346–360.

[15] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2015.
iRiS: Vetting Private API Abuse in iOS Applications. In Conference on Computer
and Communications Security – CCS 2015. ACM, 44–56.

[16] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An Empirical Study of Cryptographic Misuse in Android Applications. In
Conference on Computer and Communications Security – CCS 2013. ACM, 73–84.

[17] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS:
Detecting Privacy Leaks in iOS Applications. In Network and Distributed System
Security Symposium – NDSS 2011. The Internet Society.

[18] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-Sensitive
Interprocedural Points-to Analysis in the Presence of Function Pointers. In Pro-
gramming Language Design and Implementation – PLDI 1994. ACM, 242–256.

[19] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick D. McDaniel, and Anmol Sheth. 2010. TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In
Symposium on Operating Systems Design and Implementation – OSDI 2010. USENIX
Association, 393–407.

[20] William Enck, Damien Octeau, Patrick D. McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In USENIX Security Symposium 2011.
USENIX Association.

[21] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, Lars Baumgärt-
ner, and Bernd Freisleben. 2012. Why Eve andMallory Love Android: An Analysis
of Android SSL (In)Security. In Conference on Computer and Communications
Security – CCS 2012. ACM, 50–61.

[22] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In USENIX
Security Symposium 2011. USENIX Association.

[23] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based Detection of Android Malware Through Static Analysis. In Foundations of
Software Engineering – FSE 2014. ACM, 576–587.

[24] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. 2013. Struc-
tural Detection of Android Malware Using Embedded Call Graphs. In Artificial

Intelligence and Security – AISec. ACM, 45–54.
[25] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. Androi-

dLeaks: Automatically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale. In Trust and Trustworthy Computing – TRUST 2012 (LNCS),
Vol. 7344. Springer, 291–307.

[26] Michael C. Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
2012. RiskRanker: Scalable and Accurate Zero-Day Android Malware Detection.
In Mobile Systems – MobiSys 2012. ACM, 281–294.

[27] "grievejia". n. d.. andersen – Andersen’s inclusion-based pointer analysis re-
implementation in LLVM. https://github.com/grievejia/andersen. (n. d.). Ac-
cessed: February 2018.

[28] Ben Hardekopf and Calvin Lin. 2007. Exploiting Pointer and Location Equivalence
to Optimize Pointer Analysis. In Static Analysis Symposium – SAS 2007 (LNCS),
Vol. 4634. Springer, 265–280.

[29] Ben Hardekopf and Calvin Lin. 2007. The Ant and the Grasshopper: Fast and
Accurate Pointer Analysis forMillions of Lines of Code. In Programming Language
Design and Implementation – PLDI 2007. ACM, 290–299.

[30] Nevin Heintze and Olivier Tardieu. 2001. Ultra-fast Aliasing Analysis using CLA:
A Million Lines of C Code in a Second. In Programming Language Design and
Implementation – PLDI 2001. ACM, 254–263.

[31] Julien Henry, David Monniaux, and Matthieu Moy. 2012. PAGAI: A Path Sensitive
Static Analyser. Electr. Notes Theor. Comput. Sci. 289 (2012), 15–25.

[32] Michael Hind and Anthony Pioli. 2001. Evaluating the Effectiveness of Pointer
Alias Analyses. Sci. Comput. Program. 39 (2001), 31–55.

[33] Susan Horwitz, Thomas W. Reps, and David Binkley. 1990. Interprocedural
Slicing Using Dependence Graphs. ACM Trans. Prog. Lang. Syst. 12 (1990), 26–60.

[34] Jiri Slaby. n. d.. LLVMSlicer – Static Slicer for LLVM. https://github.com/jirislaby/
LLVMSlicer. (n. d.). Accessed: February 2018.

[35] "Kim Jong Cracks". n. d.. Clutch – Fast iOS executable dumper. https://github.
com/KJCracks/Clutch. (n. d.). Accessed: February 2018.

[36] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2014. iCryptoTracer: Dy-
namic Analysis on Misuse of Cryptography Functions in iOS Applications. In
Network and System Security – NSS 2014 (LNCS), Vol. 8792. Springer, 349–362.

[37] LLVM. n. d.. LLVM Language Reference Manual. http://llvm.org/docs/LangRef.
html. (n. d.). Accessed: February 2018.

[38] LLVM. n. d.. TableGen. http://llvm.org/docs/TableGen/. (n. d.). Accessed:
February 2018.

[39] LLVM. n. d.. The LLVM Target-Independent Code Generator. http://llvm.org/
docs/CodeGenerator.html. (n. d.). Accessed: February 2018.

[40] ARM Ltd. 2013. Procedure Call Standard for the ARM 64-bit Architecture
(AArch64). http://infocenter.arm.com/. (2013).

[41] Florian Merz, Stephan Falke, and Carsten Sinz. 2012. LLBMC: Bounded Model
Checking of C and C++ Programs Using a Compiler IR. In Verified Software:
Theories, Tools, Experiments – VSTTE 2012 (LNCS), Vol. 7152. Springer, 146–161.

[42] Karl J. Ottenstein and LindaM. Ottenstein. 1984. The ProgramDependence Graph
in a Software Development Environment. In Software Engineering Symposium on
Practical Software Development Environments – SDE 1984. ACM, 177–184.

[43] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2007. Efficient Field-Sensitive
Pointer Analysis of C. ACM Trans. Program. Lang. Syst. 30 (2007), 4.

[44] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications. In Network and Distributed System
Security Symposium – NDSS 2014. The Internet Society.

[45] Prateek Gianchandani. n. d.. DVIA – Damn Vulnerable iOS App (DVIA). https:
//github.com/prateek147/DVIA. (n. d.). Accessed: February 2018.

[46] RNCryptor. n. d.. RNCryptor – CCCryptor (AES encryption) wrappers for iOS
and Mac in Swift. https://github.com/RNCryptor/RNCryptor. (n. d.). Accessed:
February 2018.

[47] Marc Shapiro and Susan Horwitz. 1997. Fast and Accurate Flow-Insensitive
Points-To Analysis. In Principles of Programming Languages – POPL 1997. ACM
Press, 1–14.

[48] Marc Shapiro and Susan Horwitz. 1997. The Effects of the Precision of Pointer
Analysis. In Static Analysis Symposium – SAS 1997 (LNCS), Vol. 1302. Springer,
16–34.

[49] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Principles
of Programming Languages – POPL 1996. ACM Press, 32–41.

[50] Mingshen Sun, Tao Wei, and John C. S. Lui. 2016. TaintART: A Practical Multi-
level Information-Flow Tracking System for Android RunTime. In Conference on
Computer and Communications Security – CCS 2016. ACM, 331–342.

[51] The Charles Stark Draper Laboratory, Inc. n. d.. fracture – An architecture-
independent decompiler to LLVM IR. https://github.com/draperlaboratory/
fracture. (n. d.). Accessed: February 2018.

[52] Frank Tip. 1995. A Survey of Program Slicing Techniques. J. Prog. Lang. 3 (1995).
[53] Trail of Bits. n. d.. mcsema – Framework for lifting x86, amd64, and aarch64

program binaries to LLVM bitcode. https://github.com/trailofbits/mcsema. (n.
d.). Accessed: February 2018.

[54] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - A Java Bytecode Optimization Framework. In

https://github.com/repzret/dagger
https://github.com/repzret/dagger
https://github.com/androguard/androguard
https://github.com/grievejia/andersen
https://github.com/jirislaby/LLVMSlicer
https://github.com/jirislaby/LLVMSlicer
https://github.com/KJCracks/Clutch
https://github.com/KJCracks/Clutch
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/TableGen/
http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/CodeGenerator.html
http://infocenter.arm.com/
https://github.com/prateek147/DVIA
https://github.com/prateek147/DVIA
https://github.com/RNCryptor/RNCryptor
https://github.com/draperlaboratory/fracture
https://github.com/draperlaboratory/fracture
https://github.com/trailofbits/mcsema

WiSec ’18, June 18–20, 2018, Stockholm, Sweden Johannes Feichtner, David Missmann, and Raphael Spreitzer

Conference of the Centre for Advanced Studies on Collaborative Research – CASCON
1999. IBM, 13.

[55] Mark Weiser. 1981. Program Slicing. In International Conference on Software
Engineering – ICSE 1981. IEEE Computer Society, 439–449.

[56] Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-Sensitive Pointer
Analysis for C Programs. In Programming Language Design and Implementation –
PLDI 1995. ACM, 1.

[57] Zhemin Yang and Min Yang. 2012. LeakMiner: Detect Information Leakage on
Android with Static Taint Analysis. In World Congress on Software Engineering –
WCSE 2012. 101–104.

[58] Min Zheng, Hui Xue, Yulong Zhang, Tao Wei, and John C. S. Lui. 2015. Enpublic
Apps: Security Threats Using iOS Enterprise and Developer Certificates. In Asia
Conference on Computer and Communications Security – AsiaCCS. ACM, 463–474.

A DECOMPILATION
As shown in Algorithm 1, the decompilation itself consists of two
steps. First, all MachineInstructions are grouped into basic blocks
that resemble the control flow (lines 1 to 16). If an instruction
is a control flow statement, its target address is determined. The
second step iterates over MachineFunctions and its basic blocks of
disassembled instructions and decompiles them to LLVM IR using
the semantics (lines 17 to 24). If the exit point of a basic block is
reached, a terminator instruction is added to the LLVM IR code that
defines the subsequent basic blocks or returns from the function.

Algorithm 1: Decompilation workflow
1 for MI in MachineInstruction do
2 if MI.address in FunctionStarts then
3 createMachineFunction(MI.address)
4 createMachineBasicBlock(MI.address)
5 end
6 DIS← disassemble(MI)
7 if branchInstruction(DIS) then
8 if not callInstruction(DIS) then
9 if getTarget(DIS) then

10 createMachineBasicBlock(getTarget(DIS))
11 end
12 createMachineBasicBlock(MI.address +

InstructionSize)
13 end
14 end
15 addToMachineBasicBlock(DIS)
16 end
17 for MF in MachineFunctions do
18 switchToFunction(MF)
19 createAllBasicBlocks(MF)
20 for MBB in MF.MachineBB do
21 switchToBasicBlock(MBB)
22 decompileInstruction(MBB)
23 end
24 end

B POINTER ANALYSIS
B.1 Iterative Constraint Generation
As shown in Algorithm 2, we extend the original algorithm by
Anderson [3] to differentiate between call instructions and others.
After generating constraints for all regular statements (line 5), the
subsequent loop solves the constraints by propagating points-to
information through the program. The gained knowledge is then
used to update the constraints for call statements. This step is
repeated until no new edges are added to the call graph.

Algorithm 2: Constraint generation
1 for I in Instructions do
2 if isCallInstruction(I) then
3 addInstruction(I, CallInstructions)
4 else
5 generateConstraints(I)
6 end
7 end
8 repeat
9 solveConstraints()

10 for I in CallInstructions do
11 updateConstraints(I)
12 end
13 until no new constraints added

B.2 Objective-C Peculiarities
Algorithm 3 describes how the original call graph is restored using
the points-to sets of the class or object (PtsToa), and method name
(PtsTob) parameters passed to objc_msgSend(). The algorithm
iterates over the values of the two parameters and based on the
locations they point to, it determines what method can be called.
The first parameter has to point either to a class info location or to
a dynamically allocated location. If the value points to a class info
location, a class method will be called. If it points to a dynamically
allocated memory location and is annotated with type information,
an instance method is called. The result is a call graph that also
models all calls that are performed at runtime via objc_msgSend().

Algorithm 3: Call graph reconstruction using points-to sets
Input: CallInstruction, PtsToa, PtsTob

1 for loca in PtsToa do
2 ClassMethod← false
3 if PointsToClassInfo(loca) then
4 ClassMethod← true
5 end
6 Type← GetTypeName(loca)
7 for locb in PtsTob do
8 if not PointsToClassInfo(loca) then
9 continue

10 end
11 Selector← GetSelectorName(locb)
12 if not KnownMethod(Type, Selector, ClassMethod) then
13 continue
14 end
15 if HasEdge(CallInstruction, Type, Selector, ClassMethod)

then
16 continue
17 end
18 AddEdge(CallInstruction, Type, Selector, ClassMethod)
19 end
20 end

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 iOS Applications
	3.2 Program Slicing
	3.3 Pointer Analysis
	3.4 Cryptography on iOS

	4 System Design
	5 Decompilation to LLVM IR
	5.1 Recovering Lost Information
	5.2 Implementation

	6 Pointer Analysis
	6.1 Iterative Constraint Generation
	6.2 Objective-C Peculiarities

	7 Static Slicing
	7.1 Restoring Missing Type Information
	7.2 Parameter Backtracking
	7.3 Implementation

	8 Detecting Cryptographic Misuse
	8.1 Rule Checking
	8.2 Evaluating Security Properties

	9 Evaluation
	9.1 Method and Dataset
	9.2 Results
	9.3 Limitations
	9.4 Discussion

	10 Conclusion
	References
	A Decompilation
	B Pointer Analysis
	B.1 Iterative Constraint Generation
	B.2 Objective-C Peculiarities

