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ABSTRACT
The pervasive usage of mobile devices, i.e., smartphones and
tablet computers, and their vast amount of sensors repre-
sent a plethora of side channels posing a serious threat to
the user’s privacy and security. In this paper, we propose a
new type of side channel which is based on the ambient-light
sensor employed in today’s mobile devices. While recent ad-
vances in this area of research focused on the employed mo-
tion sensors and the camera as well as the sound, we investi-
gate a less obvious source of information leakage, namely the
ambient light. We successfully demonstrate that minor tilts
and turns of mobile devices cause variations of the ambient-
light sensor information. Furthermore, we show that these
variations leak enough information to infer a user’s personal
identification number (PIN) input based on a set of known
PINs. Our results clearly show that we are able to determine
the correct PIN—out of a set of 50 random PINs—within
the first ten guesses about 80% of the time. In contrast,
the chance of finding the right PIN by randomly guessing
ten PINs would be 20%. Since the data required to perform
such an attack can be gathered without any specific permis-
sions or privileges, the presented attack seriously jeopardizes
the security and privacy of mobile-device owners.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Mobile security, side-channel attack, sensor-based attack,
ambient-light sensor, mobile malware

1. INTRODUCTION
Mobile devices such as smartphones and tablet computers

have become a ubiquitous part of our everyday life. Power-
ful processors and a variety of sensors led to manifold ap-
plications being developed on these devices. Besides more
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general applications that allow users to browse the Inter-
net as well as to take and view pictures, more sophisticated
applications like augmented-reality applications and games
also exist. However, these devices are not solely employed
for entertainment applications but also for handling busi-
ness applications such as banking transactions and payment
services. This in turn leads to sensitive information being
processed on these devices, which also attracts the atten-
tion of criminals and imposters aiming to steal money from
users and to spy on specific people through malicious ap-
plications. Hence, the investigation of security and privacy
compromising threats is of utmost importance.

One potential source of security and privacy compromis-
ing threats is denoted to side channels. Side channels rep-
resent unintended information leakage during the operation
of a device and potentially allow attackers to recover se-
cret information, as demonstrated by Kocher [33] in 1996.
While traditional side-channel attacks against smartcards
require expensive hardware, smartphones employ many dif-
ferent types of sensors and features that can be exploited
for side-channel attacks. Thus, the “hardware” required to
perform side-channel attacks is provided for free.

In other words, besides providing useful information, these
sensors also represent a variety of threats to the user’s secu-
rity and privacy. Though Android employs a permission
system to prevent malicious access to specific device re-
sources, many of the employed sensors do not require any
permission at all. This exacerbates the severity of these vul-
nerabilities since applications without any specific permis-
sions are able to exploit these side channels, something that
has already been demonstrated impressively. For instance,
Marquardt et al. [35] developed an application intended to
run on a smartphone that is capable of recovering inputs of
nearby keyboards by exploiting the vibrations recored via
the accelerometer sensor. In 2012, Aviv et al. [8] demon-
strated the possibility of extracting the personal identifica-
tion number (PIN) and the unlock pattern by exploiting the
information provided by the accelerometer sensor in smart-
phones. In addition, Miluzzo et al. [37] have shown how to
extract pressed keys from the accelerometer sensor in com-
bination with the gyroscope sensor. In 2013, Simon and
Anderson [46] demonstrated how to infer PINs through the
camera and the microphone.

The importance of research in this area has been empha-
sized by Becher et al. [13]. In order to raise awareness about
such attacks and to develop effective countermeasures, these
vulnerabilities must be reported and analyzed extensively.
To this end, we show how the ambient light of the user’s



Figure 1: Samsung Galaxy SIII with (1) the proxim-
ity and ambient-light sensor as well as (2) the front
camera.

environment affects the system’s security. This is due to the
fact that today’s mobile devices are equipped with a light
sensor that provides information about the ambient light.
The most common usage of this sensor is to adjust the screen
brightness depending on the light intensity. However, due
to slight tilts and turns during the operation of the device,
the information provided by the sensor allows an attacker to
infer the input provided by the user. In this paper, we inves-
tigate the sensitive information leaked through this sensor.

Contribution. The contributions of this work can be sum-
marized as follows. First, we show that the light sensor em-
ployed in today’s mobile devices actually represents a new
type of side channel that leaks the user’s input, e.g., the se-
cret PIN input. Second, we observed that the light sensor
of modern smartphones also captures the red, green, blue,
and white (RGBW) intensities which leaks even more in-
formation and improves the accuracy of the attack. Third,
we provide practical insights into the ways in which this
side channel can be exploited to gather the secret PIN in-
put of the user by employing machine-learning algorithms.
Fourth, we discuss potential mitigation techniques to pre-
vent the exploitation of sensor-based side channels. Finally,
we also compare the presented attack to similar sensor-based
attacks.

Outline. The remainder of this paper is structured as fol-
lows. In Section 2 we start with a basic investigation of the
ambient-light sensor and provide an insight into the infor-
mation leaked through this sensor. Section 3 outlines one
potential attack scenario which takes advantage of this side
channel to recover the secret PIN input provided by the user.
Furthermore, we discuss the security implications of such at-
tacks. Later on, in Section 4, we detail how the leaked infor-
mation is actually exploited by employing machine-learning
algorithms. In Section 5 we extensively analyze the infor-
mation gathered and provide detailed evaluations regarding
the applicability and reliability of this attack. We cover lim-
itations of the presented attack in Section 6 and we provide
a brief analysis of countermeasures to prevent such attacks
in Section 7. Last but not least, we discuss related work
in Section 8 and present a conclusion for this paper in Sec-
tion 9.

2. AMBIENT-LIGHT SENSOR
The ambient-light sensor employed in many of today’s mo-

bile devices provides information about the intensity of the
surrounding illumination. Figure 1 illustrates the proximity
and ambient-light sensor as well as the front camera on a

Table 1: Sampling rates on the Samsung Galaxy SIII

Rate parameter Sample rate

SensorManager.SENSOR DELAY FASTEST (0) ∼ 750 Hz
SensorManager.SENSOR DELAY GAME (1) ∼ 49 Hz
SensorManager.SENSOR DELAY UI (2) ∼ 15 Hz
SensorManager.SENSOR DELAY NORMAL (3) ∼ 5 Hz

Figure 2: PIN input mask to gather test samples.

Samsung Galaxy SIII, which acts as our test device. The
information reported from the ambient-light sensor is given
in SI lux units, which measures the intensity of illumination
of a surface. This information is used to adapt the screen
brightness appropriately. For instance, outside in direct sun-
light the screen brightness must be increased to remain read-
able, whereas in darker surroundings the screen is dimmed
to reduce eye fatigue [45].

The ambient-light sensor can be accessed via the Android
Sensor API [5] that allows applications to register listeners
which are notified about changes of the sensor values. The
method SensorManager.registerListener(...) accepts a rate
parameter which determines how fast the events should be
reported. Table 1 shows the resulting sampling frequencies
for the different rate parameters according to our observa-
tions on the Samsung Galaxy SIII smartphone running An-
droid 4.3. We determined the number of reported values
over a period of 10 seconds for each of the listed parameters
and we observed that about 750 measurement samples can
be gathered per second. We also observed a sensor resolution
of 1 lux, i.e., the smallest detectable change is 1 lux.

The next step in determining the applicability of the light-
sensor information regarding side-channel attacks is to test
the sensitivity, i.e., whether operating the smartphone ac-
tually results in changes of the information provided by the
sensor. Therefore, we developed an Android application that
randomly generates a 4-digit PIN and prompts the user to
enter this PIN on the provided PIN pad. Figure 2 illus-
trates a screenshot of this application. During the input of
the PIN the application collects the information provided by
the ambient-light sensor as well as the corresponding times-
tamp of the reported value. Furthermore, we store a times-
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Figure 3: Light-sensor information for five consecu-
tive PIN inputs (1-5-9-0).

Figure 4: Schematic of information leakage caused
by tilts and turns of the smartphone.

tamp when a button is clicked as well as the digit of the
clicked button itself. We collected this information for five
consecutive PIN inputs and visualized the gathered informa-
tion in Figure 3. For the sake of clarity we also plotted the
corresponding digits of the PIN and, as can be seen in this
plot, a recurring pattern for different digits of the PIN (1-5-
9-0) can be observed. These differences in the light intensity
during the input of the PIN occur inevitably due to slight
tilts and turns while operating the smartphone. Figure 4
shows a schematic illustrating the tilts and turns leading to
variations of the reported sensor information. For instance,
assuming the light bulb being the main source of light, then
tilting the device to the left causes a decrease of the reported
lux value. Although we illustrate a point-like light source,
the attack also works for environments that are uniformly
lit via tube lights.

Note that the PIN input mask can be aligned on the top or
on the bottom of the screen. For instance, on our test device
the SIM-unlock PIN mask is aligned on the top while the
standard phone pad is aligned on the bottom. However, our
observations showed that the alignment does not influence
the information leakage.

Accessing the ambient-light sensor does not require spe-
cial permissions and, hence, any malicious application can
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Figure 5: RGB(W)-sensor information for five con-
secutive PIN inputs (1-7-3-0).

gather the required information without raising any suspi-
cion. Contrary to the shutter sound or a LED that indicate
an active camera [4], there is not even an audio-visual feed-
back that signals the user that data is being collected with
the sensor. Thus, we conclude that the information provided
by the ambient-light sensor can be exploited in side-channel
attacks, which means that an attacker is able to determine
the corresponding input based on this information.

2.1 RGB(W) Sensor
More recent smartphones, including the Samsung Galaxy

SIII [43] as well as the Samsung Galaxy S4 [42], also employ
an RGB(W) sensor which is capable of reporting the red,
green, blue, and white (RGBW) intensities of the ambient
light. Samsung refers to this sensor as an RGB sensor, but
since it also reports the white intensity of the ambient light
we refer to it as RGB(W) sensor. According to Samsung
Electronics [45], the RGB sensor is used to optimize the
screen brightness and sharpness to prevent eye fatigue.

The Android API does not yet support RGB(W) sen-
sors, not even the latest version (Android 4.4 KitKat [3]).
Thus, the desired sensor values must be read from the virtual
file system directly. On the Samsung Galaxy SIII reading
/sys/devices/virtual/sensors/light sensor/raw data yields the
RGBW values of the sensor. Again, no specific permissions
or super-user privileges are required to read these sensor
values. We verified the correctness of these values through
the Service Menu [26]—accessible by entering *#0*# on the
phone pad—which reports the same values.

Figure 5 illustrates the data of the same experiment as
mentioned before, but this time we also include the infor-
mation provided by the RGB(W) sensor. Due to reasons of
readability, we plotted only every 10-th value of the RGBW
intensities. We observe that all values show a similar curve,
but the intensity of the blue light seems to provide a smoother
curve than the other four values. Again, we plotted the event
of a digit input and labeled each event appropriately. For
this specific plot we observe that the “OK” button leads to
a rather heavy decrease of the sensor values.

Our observations show that the RGBW information pro-
vides additional information that can be exploited, i.e., ad-
ditional features to be used for the machine-learning algo-
rithm later on.



3. ATTACK SCENARIO
In this section, we outline one possible attack scenario.

Based on this scenario, we will later on illustrate the indi-
vidual steps to reproduce the actual exploitation of the light-
sensor information by employing machine-learning techniques.
Since the captured light-sensor information reflects the user’s
ambient-light conditions, a generic attack requires further
investigations and is, thus, beyond the scope of this work.
Currently, we consider a scenario where the user provides
the data to be used to train the machine-learning algorithm
in the same environmental setting as the actual data which
is to be classified later on. Hence, we consider the following
situation as a possible attack scenario.

3.1 Training Phase
A hand-crafted application, i.e., an addicting game, is

used to gather the light-sensor information during the user’s
interaction with the smartphone. The application in ques-
tion tricks the user into operating the smartphone in a way
that is similar to the input of multiple PINs. For example,
an application similar to Math Trainer [47] could be used,
where the user is supposed to solve mathematical puzzles
and to enter numbers which can be seen as PINs.

We assume that users play such games in the living room
while watching TV, in a waiting room while waiting for an
appointment, or during a train ride. Hence, even though
mobile devices are carried around all the time, there are
still many opportunities to gather the required data from
users operating the smartphone while not walking around.
Furthermore, a recent study performed by the UK’s Office of
Communications [49] coined the term media stacking, which
refers to the fact that about half of UK’s adults conduct
their smartphone or tablet computer while watching TV.
Thus, our assumption seems to be reasonable and the out-
lined attack scenario is rather realistic.

The game, as outlined above, might only be able to cap-
ture a limited number of training samples (PINs) to be
used for the classification of the unknown PIN. However,
as has been shown in 2012 by Bonneau et al. [17] as well
as Jakobsson and Liu [30], people tend to choose specific
PINs like dates as well as PINs that represent common four-
digit words, e.g., “love” (5683). Thus, taking research about
the users’ tendency to choose PINs into consideration, a set
of commonly used PINs could be established and might be
enough to determine the correct one. The above mentioned
game can be used to learn this set of commonly used PINs.

In case computing power for the machine-learning algo-
rithm is required, i.e., a powerful server, the application re-
quires an Internet connection to transmit the gathered data
to this powerful intermediary. Nevertheless, we argue that
convincing the user that the application requires the Inter-
net permission is easy. For instance, to retrieve high scores
or information about new updates, new games, etc. Thus,
we claim that the proposed attack can be performed without
raising the user’s suspicion.

3.2 Exploitation Phase
After gathering enough samples, the application tricks the

user into restarting the device or starting the desired appli-
cation, e.g., the banking application, just to capture the
light-sensor information during the input of the authentica-
tion PIN. If one considers to attack the smartphone’s PIN, a
service can be implemented to be started on boot time. Af-

terwards the sensor information captured during the game
play is used to deduce the unknown PIN input by means of
machine learning. Note that the game, e.g., Math Trainer,
might also trick the user into buying a specific add-on, a
“new level”, or a “new stage”. When the user performs the
in-app billing via Google Wallet, the game skims the corre-
sponding authentication PIN.

Now one might question whether the revealed PIN is of
any value for the attacker. In fact, if the attacker later gains
physical access to the mobile device, she might gain access
to the mobile device by unlocking the phone, or even worse,
might cause financial damage by authenticating herself to
the corresponding application using the correct PIN. Fur-
thermore, Aviv et al. [8] argued that the learned PIN might
be valuable in case the user reuses the PIN, for instance,
as the ATM PIN. In addition, Simon and Anderson [46]
predict that the number of smartphone applications requir-
ing an authentication PIN will increase over time. Hence,
users might be tempted to reuse one PIN across different
applications, which exacerbates PIN-skimming vulnerabili-
ties. Overall, we consider the presented attack as a serious
threat for today’s mobile devices.

3.3 Security Implications
Simon and Anderson [46] state that sensor-based side-

channel attacks are capable to overcome strong separation
mechanisms like Samsung KNOX [44] or BlackBerry Bal-
ance [15]. These mechanisms try to separate the “private”
world from the “business” world in order to provide better
protection of corporate data on smartphones. Such mecha-
nisms are of special interest in the Bring Your Own Device
(BYOD) context where employees integrate their personal
devices into the company’s infrastructure. However, based
on the leaking sensor information, an unprivileged applica-
tion running in the “private” world of the smartphone might
gain knowledge of sensitive information entered in the “busi-
ness”world. It is important to note that the presented attack
is also capable to overcome these separation mechanisms if
unprivileged applications running in the “private” world are
allowed to access the ambient-light sensor during the opera-
tion of the “business” world. Furthermore, since BlackBerry
smartphones also support the execution of Android applica-
tions and the BlackBerry Runtime 10.0 [16] also supports
the ambient-light sensor, a malicious application developed
for Android devices might also harm BlackBerry devices.

3.4 Observations and Assumptions
Considering a PIN-input mask as illustrated in Figure 2,

and a user operating the smartphone with only one hand,
using the thumb to enter the digits, we make the follow-
ing observations. Left-handed persons tilt the smartphone
slightly to the left side when entering PIN digits in the mid-
dle and right column of the key pad, i.e., 2, 3, 5, 6, 8, 9. In
contrast, right-handed persons tilt the smartphone slightly
to the right side when entering PIN digits in the left and
middle column, i.e., 1, 2, 4, 5, 7, 8. We attribute this ob-
servation to the fact that people slightly push the display
towards the thumb. These tilts of the device cause the vari-
ations in the captured light-sensor information. Similarly,
we expect fewer tilts and turns of the mobile device if it is
held with one hand and operated with the index finger of
the other hand or a stylus pen. Based on these observations
we make the following assumptions.



Assumption 1. We assume the user is holding the mobile
device in his hands rather than laying it onto a flat surface
while operating it. If we would assume the mobile device is
lying on a stable surface, i.e., a table, the light-sensor infor-
mation would not change during the operation of the device,
unless the user’s hand causes the light-sensor changes.

Assumption 2. Furthermore, we assume that the PIN is
entered on a key pad similar to the one illustrated in Fig-
ure 2 rather than a QWERTY keyboard with a single row
of numbers. Examples of applications that are “protected”
with an authentication PIN are, for instance, AppLock [21],
Evernote [22], and KeepSafe [31], as well as mobile banking
applications, e.g., Barclays [12], and NAB [38], just to name
a few of them. Screenshots of these applications—provided
by the corresponding developers—show that the authentica-
tion PIN is entered on a key pad as illustrated in Figure 2.
Hence, this seems to be a rather fair assumption which does
not have a negative impact on the attack scenario.

Assumption 3. We also assume that the user operates the
mobile device in an environment where the light sensor faces
a sufficiently large variance of the ambient light. This is
not the case in completely dark environments. However,
also rather gloomy environments, i.e., a room in the late
afternoon without any artificial light source (rather diffuse
light), can be considered for potential attack scenarios, at
least in case the lux values vary slightly during the operation
of the device.

4. ATTACK APPROACH
In this section, we detail the steps for the exploitation

of the light-sensor information. As outlined in the scenario
above, we perform a matching of sensor values captured dur-
ing the input of an unknown PIN to the sensor values of
known PINs. In terms of machine learning this represents
a classification problem, where a so-called feature vector is
mapped to a finite number of labels or categories, i.e., PINs
in our case. The required steps are as follows: (1) gathering
the sensor values under known PINs as well as the sensor
values under unknown PINs, and (2) employing machine-
learning techniques to determine the unknown PINs based
on the set of known PINs.

In order to perform the classification, sensor values and
the corresponding PINs are used to train the classifier. This
data is referred to as training data. The actual data that is
to be classified is known as test data. We stick to the nota-
tion of Alpaydin [2] and Bishop [14], i.e., bold letters denote
vectors and a superscript T denotes the transpose of a vec-
tor. Furthermore, uppercase bold letters denote matrices.
Vectors are assumed to be column vectors by default.

4.1 Gathering the Required Data
The gathering of the required training data during game

play can be formalized as follows. The malicious applica-
tion captures a list of tuples (t, L,R,G,B,W ), with t being
the timestamp and L, R, G, B, and W representing the lux
information, as well as the red, green, blue, and white inten-
sities of the ambient light. Furthermore, we capture a list
of tuples (tp, d), with tp being the timestamp of a pressed
digit d ∈ {0, . . . , 9} of the p-th PIN. In our scenario one
PIN consists of four consecutive tuples in this list. The two

timestamps t and tp allow us to align the event of a pressed
digit with the data of the ambient-light sensor later on.

For each PIN we extract the sequence of sensor values
within the time period defined by the timestamp of the first
digit and the timestamp of the last digit of the PIN. In addi-
tion, one might consider a time frame of a few milliseconds
before and after the input of the first and the last digit of
one PIN, which covers additional information. The resulting
matrix M for one PIN is as follows.

M =

(t, L,R,G,B,W )1
...

(t, L,R,G,B,W )l



Every column within matrix M represents the correspond-
ing sensor information during the input of one specific PIN,
except the first one which represents the timestamp at which
the information was captured. Before the gathered informa-
tion can be exploited, we normalize the sensor values appro-
priately. This normalization of the data is done either by
dividing each value (L, R, G, B, W ) in one column by the
norm of the corresponding column vector, or by rescaling the
values via, e.g., Li = (Li −min(L)) / (max(L)−min(L)).

The data of matrix M is then used to derive the actual
feature vectors. While Owusu et al. [39] consider a large
number of features and employ special feature selectors to
determine the actual set of features to be used, we keep
the feature space simple and stick to a limited number of
features for our investigation. These features are outlined
briefly within the following paragraphs.

Lux Values Only. The first set of feature vectors we con-
sider are the exact lux values at the input of each specific
digit of the PIN. Therefore, we use the timestamp of each in-
put event during one PIN input to look-up the corresponding
values in matrix M. We represent these values as a vector
x = [L1, L2, L3, L4]T, where the subscript refers to a specific
digit of the PIN.

Lux Values Including RGBW Values. The second set
of feature vectors we consider are the exact lux values in-
cluding the red, green, blue, and white (RGBW) intensities
at the input of each digit for one specific PIN, represented
as x = [L1, R1, G1, B1,W1, . . . , L4, R4, G4, B4,W4]T. In the
following we refer to the feature vector comprised of these
five features as LRGBW.

Polynomial of Degree 3. The third possibility we con-
sider is fitting a polynomial of degree 3 through the sec-
ond column of M. More formally, through all lux values
during one PIN input. The coefficients of this polynomial
f (x) = ax3 + bx2 + cx + d are then considered as the fea-

tures of a specific PIN, i.e., x = [a, b, c, d]T. The coefficients
for the red, green, blue, and white intensities—the remain-
ing columns of M—are obtained in the same manner and
appended to x.

After gathering the data as outlined above, any set of the
outlined feature vectors is combined into a matrix Fn with
n rows, i.e., one row for each PIN. Furthermore, a class
vector cn = [(d1, d2, d3, d4)1, . . . , (d1, d2, d3, d4)n] of tuples



corresponding to the PIN-digits can be derived.

Fn =

x1

...
xn

 , cn =

(d1, d2, d3, d4)1
...

(d1, d2, d3, d4)n


The matrix Fn as well as the label vector cn are then used
to train the classification algorithm.

4.2 Detecting PIN Inputs
The above outlined approach of gathering the feature vec-

tors can be performed in a real attack because the data
for training the machine-learning algorithm can be captured
during game play, in which situation all of this information is
available, including the timestamp of a pressed digit. How-
ever, during the input of the unknown PIN the timestamp
is not known and hence we need a mechanism to determine
the PIN input on a sequence of sensor values. Therefore, the
approach of Miluzzo et al. [37] might be used. Their idea is
to move “windows” of a fixed length (the length of an aver-
age PIN input time) over the sensor data and try to detect
the input. Another approach by Simon and Anderson [46]
suggests to use the microphone to capture the vibrations
of the haptic feedback to determine when a button on the
touchscreen has been pressed. While the former approach
does not require any specific permission, the latter approach
requires a permission to access the microphone. However,
we consider the detection of PIN inputs on a sequence of
sensor values as solved and beyond the scope of this work.

4.3 Determining the Unknown PIN
After we gathered the required light-sensor information

for all the PINs (Fn and cn) to be used for the training
phase of the machine-learning algorithm, we start the ac-
tual training phase. Therefore, we employ Matlab’s Statis-
tics Toolbox [36] with its extensive features and machine-
learning algorithms. We perform the outlined attack by em-
ploying a supervised learning algorithm, which tries to learn
a function and its parameters based on labeled training data.
This function is later on used to determine the label of un-
seen data. More formally, given a set of tuples (xi, ci), with
xi ∈ Rn being a feature vector and ci the corresponding la-
bel of the observation, the algorithm tries to infer a function
f : X → C, where X ∈ Rn represents the feature vector of
an observation and C the inferred label.

In this work, we investigate three different classification
algorithms—which have also been used in related work [8,
37]—and compare their results afterwards. We briefly out-
line the chosen classification algorithms in the following para-
graphs. For further information about these algorithms we
refer the reader to [2, 14].

Multiclass Logistic Regression. The classifier tries to
learn parameters wk for every class label k ∈ C, such that
a vector x is assigned to label k in case p(k|x) > p(j|x) for
all j 6= k, with p defined as below.

p(k|x) =
exp

(
wT

k · x
)∑

i exp(wi
T · x)

Discriminant Analysis. The classifier tries to learn pa-
rameters wk for every class label k ∈ C, such that a vector
x is assigned to label k in case fk(x) > fj(x) for all j 6= k,

with f defined as below.

fk(x) = wT
k · x + wk0

When talking about discriminant analysis we refer to linear
discriminant analysis, where classes are separated linearly.

K-Nearest Neighbor Algorithm. The algorithm assigns
the input vector x a label which is determined by the major-
ity of the K nearest neighbors. In our case, we used K = 5.
Usually, the Euclidean distance is used to determine the dis-
tance between two vectors.

5. EVALUATION AND RESULTS
We engaged a total of ten users to acquire the necessary

data for the evaluation of this information leakage. Each
user was asked to enter at least one set of random PINs
with cardinality k ∈ {15, 30, 50}, each PIN for a specific
number of times N ∈ {3, . . . , 10}. If a PIN was entered
incorrectly, we ignore the corresponding input and prompt
the user to enter the PIN again. Unless explicitly stated, we
always use the largest set of 50 PINs within the following
analysis. We basically follow the approach of Aviv et al. [8]
who also measured the performance of their attack on a set
of 50 PINs. In total we use the data of 29 test runs gathered
by a total of ten users.

Evaluation Methodology. Since the performance of a
learned classifier could be distorted (either positively or neg-
atively) when determined solely with the gathered test data,
we apply the concept of k-fold cross validation. The purpose
of this concept is to estimate the average success rate of
classifying unknown data into one of the learned categories.
Compared to the performance based solely on specific test
data, the concept of cross validation provides more reliable
estimations regarding the performance of a classifier [14].

Setup. We performed the tests in rather unconstrained en-
vironments regarding the lighting conditions. This means
that experiments were performed in office rooms that were
uniformly illuminated via tube lights, in a living room with
a standard ceiling lamp, and in rooms where the only light
source was a window. We even considered different day-
times, e.g., during the day and in the late afternoon which
means that this attack was also tested for diffuse light con-
ditions without a direct source of light rays. However, we
asked the users not to walk around while entering the pre-
sented PINs, which is compliant with the above outlined
attack scenario. Furthermore, we did not insist on a specific
input method, but only that the users hold the mobile device
during the operation. Allowing users to choose their desired
input method freely yields more generic results because the
users operate the mobile device in their usual manner.

We watched the users during the gathering of the measure-
ment samples and observed the following input methods:

1. Holding the smartphone in one hand and entering the
digits with the thumb of the same hand.

2. Holding the smartphone in one hand and entering the
digits with the thumb of the other hand.

3. Holding the smartphone in one hand and entering the
digits with the index finger of the other hand.
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Figure 6: Average rate of correctly classified PINs
over multiple runs with a set of 15 PINs each.

Within the following paragraphs we analyze the gath-
ered data with the above mentioned machine-learning al-
gorithms and the proposed feature vectors in order to deter-
mine whether the secret PIN input can be recovered based
on a set of known PINs.

5.1 Comparison of Classification Algorithms
Our first intention is to determine the overall classifica-

tion rate based on the different classification mechanisms:
(1) multiclass logistic regression (logistic regression), (2) lin-
ear discriminant analysis (discriminant analysis), and (3) k-
nearest neighbor classification (KNN). These classifiers are
fed with the feature vectors: (a) the lux values only (L), and
(b) the lux values including the RGBW values (LRGBW).

We applied a 10-fold cross validation on all three classi-
fiers and evaluated the performance of the suggested features
for different numbers of samples (repetitions) per PIN. Fig-
ure 6 illustrates the average rate of correctly classified PINs
out of a set of 15 known PINs for the different classifiers
and the proposed feature vectors. The y-axis represents the
average rate of correctly classified PINs, and the x-axis il-
lustrates the number of gathered samples (repetitions) per
PIN. Given this plot, we observe that the feature vector com-
prised of the LRGBW values outperforms the lux value only
feature vector most of the time for all classifiers. Thus, we
conclude that the additional information leaked through the
RGB(W) sensor leads to a better attack performance. We
also observe that the linear discriminant analysis provides
better results than the other two classifiers. Furthermore,
the average rate of correctly classified PINs increases with
the number of samples per PIN. For instance, if we perform
a linear discriminant analysis with a training set of 15 PINs,
each repeated 8 times, then we are able to classify more than
80% of the PINs correctly. Note that the chance of correctly
guessing the right PIN from a set of 15 PINs randomly is
1
15

= 6.7%.
Figure 7 illustrates the average rate of correctly classified

PINs out of a set of 50 PINs. Again, the linear discrimi-
nant analysis outperforms the other two classifiers and the
additional information from the RGB(W) sensor increases
the performance compared to the lux value only. At first
glance, an average rate of correctly classified PINs of 40 to
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Figure 7: Average rate of correctly classified PINs
over multiple runs with a set of 50 PINs each.
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Figure 8: Average rate of correctly classified PINs
over multiple runs with a set of 15 PINs each.

50% seems to be quite moderate. However, the chance of
correctly guessing the right PIN from a set of 50 PINs is
1
50

= 2%. Thus, our attack outperforms random guessing
by a factor of 20 to 25.

5.2 Comparison of Feature Vectors
Since we introduced a feature vector which is comprised

of degree 3 polynomials fitted through all the sensor values
(e.g., lux and RGBW values) during one PIN input, we need
to compare the performance of the plain sensor values and
the approximated sensor values.

Figure 8 illustrates the average rate of correctly classified
PINs for these feature vectors based on a 10-fold cross vali-
dation over multiple runs with a set of 15 PINs. We observe
that both feature vectors, i.e., the plain sensor values as
well as the approximated sensor values, yield a similar per-
formance for the different classification algorithms. Again,
the linear discriminant analysis performs better than the
other two classifiers. Based on this observation we only fo-
cus on the linear discriminant analysis within the following
investigations.
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Figure 9: Average rate of correctly classified PINs
for multiple guesses on a set of 50 PINs.

5.3 Guessing PINs Based on their Probability
An interesting approach is to consider the fact that an

adversary is able to enter PINs for a specific number of times,
i.e., to guess possible PINs according to their probability for
being the correct one. In this case the probability of finding
the correct PIN increases with every tested PIN. Thus, we
instruct the classifier to return a probabilistic ranking of
the inferred PINs. Afterwards, we sort the potential PINs
according to their probability for being the correct one and
illustrate the rate of correctly classified PINs after a specific
number of guesses.

Figure 9 shows the average rate of correctly guessing a
PIN out of a set of 50 random PINs for a specific num-
ber of guesses. The additional information provided by the
RGB(W) sensor increases the success rate by about 10 per-
centage points compared to the lux value only feature vec-
tor. We also illustrate the success rate if one were trying to
guess PINs randomly, which clearly shows the advantage of
our attack compared to random guessing.

When comparing our results to the results of Aviv et
al. [8], we observe that the ambient-light sensor provides
results at least as good as those achieved by exploiting the
accelerometer sensor. Comparing our results to the work
of Simon and Anderson [46], we observe that the ambient-
light sensor provides even better results than the approach
of exploiting the camera to infer PINs. For instance, Simon
and Anderson claim to infer more than 30% of the PINs af-
ter two guesses and more than 50% of the PINs after five
guesses. In contrast, the ambient-light sensor allows us to
infer about 50% of the PINs after two guesses and about
65% of the PINs after five guesses.

The presented results indicate that guessing PINs accord-
ing to their probability for being the correct one provides an
effective means of finding the correct one. On average we are
able to determine the correct PIN with a probability of 80%
when considering the ten most probable PINs. In contrast,
guessing PINs randomly from a set of 50 PINs would result
in a success rate of 20% after ten guesses.

5.4 Impact of Different Input Methods
Since users employ different input methods, we also inves-

tigate the impact of an input method on the classification
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Figure 10: Average rate of correctly classified PINs
for different input methods on a set of 15 PINs.

Table 2: Input methods of three users

User Input method

User 1 Left hand and index finger
User 2 Right hand and right thumb
User 3 Left hand and index finger

rate. To this end, we compare the three input methods ob-
served during our experiments:

1. Holding the device in one hand and using the thumb
of the same hand to operate it.

2. Holding the device in one hand and operating it with
the thumb of the other hand.

3. Holding the device in one hand and using the index
finger of the other hand to operate it.

Figure 10 illustrates the average rate of correctly classi-
fied PINs for the three different input methods after guess-
ing a specific number of the most probable PINs. The plot
is based on a 10-fold cross validation considering a linear
discriminant analysis on the LRGBW values. Each of the
underlying sets of PINs had a cardinality of 15. Accord-
ing to this plot the two input methods involving the thumb,
i.e., left hand and right thumb as well as right hand and
right thumb, seem to be more vulnerable to this attack than
the one with the index finger. This is due to the fact that
the mobile device usually undergoes only minor movements
when the index finger is used, because one hand is solely
used to hold the mobile device. However, this is not entirely
correct because also for the input method involving the left
hand and the right thumb one hand is solely used to hold
the mobile device.

To gain further insight into factors affecting the rate of
correctly classified PIN inputs, we compare the provided
data of three different users. The corresponding input meth-
ods of these users are illustrated in Table 2. All three users
entered 30× 3 PINs, i.e., each of the 30 PINs was entered 3
times, within the same room under the same environmental
conditions regarding the ambient light.
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Figure 11: Average rate of correctly classified PINs
for three specific users on a set of 30 PINs.

Figure 11 illustrates the result of the 10-fold cross valida-
tion of the three data sets provided by User 1, User 2, and
User 3, respectively. The input method of User 2 seems to
leak the most information. This appears to be due to the
fact that she rested her upper arm against her upper body
in a relaxed manner and operated the smartphone in a very
comfortable way. User 1 placed her elbows on her knees and
also operated the device in a very relaxed way. In contrast,
User 3 tightly pressed her upper arm against the upper body
and held the device very firmly in her hand while entering
the digits with the index finger. Based on the investiga-
tions of these three users, we observe that though the input
method seems to have an impact on the classification rate,
a general statement regarding the security or insecurity of
a specific input method is difficult to make. Nevertheless,
we claim that the tighter and more firmly one holds the de-
vice, the less information is leaked. To put it more generally,
the more movements the mobile device undergoes during the
operation, the more information is leaked.

5.5 Impact of the Sampling Frequency
As outlined in Section 2, the ambient-light sensor can be

configured to operate with different sampling frequencies.
With a sampling frequency of 750 Hz the Samsung Galaxy
SIII provides an immense number of measurement samples
per second, far more than is necessary for a successful attack.
In fact, most of our attacks were performed with a sampling
frequency between 5 and 50 Hz, though we performed suc-
cessful attacks with all possible sampling frequencies.

Figure 12 indicates that the lowest sampling frequency
supported by our device (5 Hz) is actually enough to per-
form the presented attack. The plot illustrates that the per-
formance does not even decrease when sampling with the
lowest frequency of 5 Hz.

Demonstrating that an attack can be performed with a low
sampling frequency is more important than demonstrating
its success on a high sampling frequency. This is due to the
fact that many devices are already equipped with such a sen-
sor and upcoming mobile devices are most likely equipped
with even more powerful RGB(W) sensors, i.e., supporting
even higher sampling frequencies and resolutions.

Though we did not observe any problems with the lowest
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Figure 12: Average rate of correctly classified PINs
for different sampling rates based on a set of 15
PINs.

sampling frequency on the Samsung Galaxy SIII, we note
that even lower sampling frequencies potentially might pre-
vent this attack. This is due to the fact that for sampling
frequencies below 5 Hz too few measurement samples might
be gathered if one enters the PIN too fast.

6. LIMITATIONS
The presented attack also has some limitations. First, our

model does not consider mistyped PINs. If a user deletes an
incorrect digit and enters the correct digit afterwards, we
are not able to infer the correct PIN anymore. Neverthe-
less, related attacks also do not cover this case. Second, we
did not evaluate our attack outside under sunny, foggy or
cloudy light conditions. However, we evaluated the attack
in a room—where the only light source was a window—
during different daytimes. Furthermore, the data used to
train the machine-learning algorithm is currently gathered
in the same environment as the actual data that should be
classified. Nevertheless, our attack scenario is based on the
assumption that people use their smartphone while watch-
ing TV, while waiting in a waiting room, or during a train
ride, which seems to be a reasonable assumption. Future
work, however, might investigate whether a more general
model can be established in order to decouple the training
phase from the actual attack phase. For instance, a “cali-
bration” phase might be used to determine the overall light
conditions in the user’s environment to speed-up the train-
ing phase. Third, due to the fact that the presented attack is
based on the ambient-light sensor, it does not work in case
the user operates the mobile device in a completely dark
environment. Though, a completely dark environment also
prevents an attack that exploits the camera [46].

7. ANALYSIS OF COUNTERMEASURES
In this section, we discuss potential mitigation techniques

to prevent the exploitation of sensor information.

7.1 UI and API Modifications
Aviv et al. [8] argue that an effective security mechanism

would be to prevent untrusted applications from accessing



motion sensors, at least during the input of sensitive in-
formation. However, the crucial question is: When is an
input considered as being sensitive? Clearly, the input of
an authentication PIN or a password represents a sensitive
input. But what about the input while writing an e-mail
or the data entered in forms on websites? Perhaps the sen-
sors should be disabled as soon as the virtual keyboard is
displayed? However, this renders applications that rely on
these sensors completely useless as is also stated in [8].

Owusu et al. [39] suggest to vary the keyboard layout by
rearranging the buttons on the virtual keyboard prior to ev-
ery sensitive input. The drawback of such countermeasures
is the dramatic decrease of usability. While this might be
applicable for a PIN pad, it would definitely undermine the
usability of the QWERTY keyboard layout.

Limiting the resolution and the sampling frequency of the
sensor might be another possible countermeasure. For in-
stance, the ambient-light sensor is currently used to adapt
the screen brightness. For such an application a more coarse
resolution as well as a lower sampling frequency should be
sufficient. We are not aware of any scenario that requires
a sampling frequency of 50 Hz or even 750 Hz. As we have
shown in this paper, even the lowest sampling frequency of
5 Hz on the Samsung Galaxy SIII does not prevent the pre-
sented attack. However, reducing the sampling frequency
to 1-2 Hz should suffice for the task of adapting the screen
brightness and to prevent the presented attack. Further-
more, since only the OS performs the task of adapting the
screen brightness, access to this sensor might be restricted to
the OS exclusively. While these countermeasures might be
quite effective, they limit the functionality of specific appli-
cations, e.g., games that heavily rely on the usage of sensors.

7.2 Rethinking the Permission Model
A quite sophisticated countermeasure might be a fine-

grained permission system in mobile operating systems1.
Felt et al. [24] evaluated different permission-granting mech-
anisms, including automatic granting, trusted UIs (cf. Roes-
ner et al. [41]), runtime-consent dialogs, and install-time
warnings. After considering their model we conclude that
an effective countermeasure would be an install-time warn-
ing, i.e., to pause the installation process and to explicitly
inform or warn the user about the requested permission.

Specific risks that might arise from permissions must be
communicated to the user, as has also been reported by
Felt et al. [25], especially since the manifold permissions con-
fuse many users [25, 32]. However, excessive warnings lose
effectiveness and might cause users to ignore these warn-
ings again. In order to overcome this problem, Peng et
al. [40] suggest to rank applications according to their risks
rather than using a binary decision for the classification of
vulnerable applications. This ranking decision is based on
the requested permissions of applications that are known to
be malware. Based on such a ranking users might make
more deliberate decisions regarding the installation of appli-
cations. However, such rankings are only applicable if the
motion sensors as well as the ambient-light sensor are con-
sidered within the permission system of the OS, which calls
for security-specific actions of operating-system developers.

1Recently, Google took the opposite approach and “simpli-
fied the permission system” [28]. Now users are informed
about rather coarse-grained permission groups during the
installation of applications.

7.3 Application Analysis
A similar approach might be achieved by extending App-

Guard [11]—an application to enforce security policies—
to support the detection of possibly unwanted sensor ac-
cesses by malicious applications. AppGuard could scan ap-
plications during the installation and inform the user about
sensor accesses that potentially leak sensitive information.
Other malware-analysis applications such as static analyz-
ers, e.g., Stowaway [23] or AndroidLeaks [27], or applications
like VirusTotal [50] could also be extended to check appli-
cations for malicious sensor accesses.

7.4 User Behavior
Another possible countermeasure might be to enter sen-

sitive data only in environments without any light source
and with the index finger or a stylus pen. However, in this
case other sensors, e.g., motion sensors, might still be ex-
ploitable. So, for really sensitive data, the user might cover
the ambient-light sensor as well as the camera, e.g., with her
finger, and place the mobile device on a flat surface while
providing the input.

Encouraging users to choose longer PINs and passwords
might also increase the security [46]. However, some appli-
cations do not even allow PINs with more than 4–5 digits.
Again, the drawback of such countermeasures is the decreas-
ing usability. Last but not least, awareness must be raised
amongst users. Applications should not be able to gather in-
formation without knowledge of the user and users must be
encouraged to be wary when installing applications, which
is why studies like this one are essential.

8. RELATED WORK
Side-channel attacks on input devices in general have been

shown to occur both directly [6, 34, 48] as well as indirectly,
e.g., through oily residues on the touchscreen [7], or through
reflections of monitors [9, 10]. More specific investigations
of threats represented by sensor-based side channels on mo-
bile devices include, for instance, the work of Cai et al. [20].
They raised the awareness regarding the camera, the mi-
crophone, and the GPS signal in modern smartphones. In
2011, Cai and Chen [18] claimed to be the first to show
the privacy risk of motion sensors utilized in smartphones.
Han et al. [29] used the accelerometer sensor to infer the lo-
cation of the device owner, even with the location-based ser-
vices deactivated. In 2012, Owusu et al. [39] employed the
accelerometer sensor to infer passwords entered on touch-
screens. Miluzzo et al. [37] and Xu et al. [51] made use of
the accelerometer and motion sensors in general to infer the
locations of taps on touchscreens. Recently, attacks have
been presented to infer unknown PIN inputs based on a set
of learned PINs. For instance, Aviv et al. [8] demonstrated
such an attack by exploiting the accelerometer and Simon
and Anderson [46] demonstrated such an attack by exploit-
ing the camera and the microphone. We briefly compare re-
lated attacks to our attack within the following paragraphs.

Comparison. Compared to attacks based on motion sen-
sors, a major advantage of the ambient-light sensor is the
power consumption. The method Sensor.getPower() returns
the power in mA used by the corresponding sensor while
in use [5]. On our Samsung Galaxy SIII this method re-
turns 0.2 mA for the ambient-light sensor, 0.23 mA for the



Table 3: Comparison of related work targeting a set of 50 PINs
Aviv et al. [8] Simon and Anderson [46] Ours

Sensor Accelerometer Camera Ambient-light sensor
Permissions Internet Camera, Internet Internet
Training Independent of user/location For each user individually For each user/environment individually
Drawbacks - LED and shutter sound on non-rooted devices Does not work in completely dark environments
Input method No constraints Thumb of holding hand No constraints
Accuracy 43% within 5 guesses 50% within 5 guesses 65% within 5 guesses

accelerometer, and 6.1 mA for the gyroscope. Hence, the
ambient-light sensor consumes a factor of 30 less power than
the gyroscope, which means that our attack is less prone to
gain the user’s attention through battery drainage.

Table 3 provides a comprehensive comparison of related
work that is similar to ours, i.e., attacks targeting a specific
set of PINs. All attacks assume to have Internet access in
order to transfer the gathered data to a powerful server that
performs the classification. However, as argued in Section 3,
the Internet permission can be gained rather easily without
raising the user’s suspicion.

The main drawback of our attack is that users are not al-
lowed to walk around while entering the PINs because cur-
rently the data is only exploitable for one specific environ-
ment. Hence, the data cannot be reused for multiple attacks
as in case of Aviv et al. [8]. Nevertheless, their results indi-
cate a rather low success rate of 20% within 5 guesses when
inferring PINs that were entered while walking around. Fur-
thermore, their attack also works in completely dark envi-
ronments which does not hold for the ambient-light sensor.
However, our results indicate a slightly better accuracy of
65% within 5 guesses when inferring unknown PINs.

The work of Simon and Anderson [46] additionally re-
quires the Camera permission which potentially gains the
user’s suspicion. In addition, their attack must deal with
the problem of audio-visual feedback, e.g., the shutter sound
or the LED, while capturing the required data. Compared
to their work we do not restrict our study to specific input
methods as long as the user is holding the device while op-
erating it. Furthermore, they need to transfer image data
to the server, which cannot be represented as compact as
sensor values. While this first investigation showed that
the ambient-light sensor might not be superior to existing
sensor-based attacks, we have shown that this sensor leaks
sensitive information that can be exploited effectively.

9. CONCLUSION AND FUTURE WORK
In this paper, we investigated a new type of side channel

which is based on the ambient-light sensor employed in to-
day’s mobile devices. To the best of our knowledge, we are
the first to show that the ambient-light sensor indeed leaks
sensitive information about the user’s input on the touch-
screen. We developed a proof-of-concept application that
allows us to infer unknown PINs, when given a set of al-
ready known PINs. This application clearly demonstrates
that the leaked information represents a viable side chan-
nel for compromising the user’s privacy and security. Since
no specific permission is required to access this sensor, an
adversary is able collect sensitive inputs from mobile-device
owners without raising any suspicion and, thus, remain un-
recognizable.

Any mobile device equipped with an ambient-light sensor
that provides a sufficiently high sampling rate and resolution

can be attacked. Our investigation showed that state-of-the-
art smartphones—from all major device manufacturers—
include an ambient-light sensor and might be at risk.

There are many different dimensions among the informa-
tion leakage of sensors which can be investigated. Exam-
ples of factors affecting the applicability and performance
of sensor-based side-channel attacks are, for instance, the
sensor hardware itself, the screen dimension, the device ori-
entation, the keyboard layout, the user’s behavior and typ-
ing style, the different classification algorithms and the em-
ployed feature vectors, the actual environment (e.g., indoor
and outdoor), etc. These examples demonstrate that fur-
ther research is necessary to evaluate the performance of
all available sensors under different settings in order to de-
termine the best sensor for a specific attack scenario. For
instance, Cai and Chen [19] as well as Al-Haiqi et al. [1] per-
formed a comparison of the gyroscope and the accelerometer
for multiple users on different devices in different settings to
determine the best motion-based sensor. It remains an open
question whether a combination of motion sensors with the
ambient-light sensor leads to better performances than re-
ported so far. However, the intention of this work was to
provide a first feasibility study. By comparing three classi-
fication algorithms, different feature vectors, different input
methods, different environments, and the impact of differ-
ent sampling frequencies, we showed that the ambient-light
sensor provides a viable side channel.

Related work on the leakage of motion sensors claimed
that access to these sensors must be limited with a fine-
grained permission system. As shown in this work, access
to the ambient-light sensor must also be protected through
such a permission system and, thus, operating-system devel-
opers need to deal with this problem. Probably even more
important is the fact that users need to be aware of such
threats and be wary when installing applications that re-
quire permissions to access sensors. This is actually why
studies like this one are essential.
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[9] M. Backes, T. Chen, M. Dürmuth, H. P. A. Lensch, and M. Welk.
Tempest in a Teapot: Compromising Reflections Revisited. In
IEEE Symposium on Security and Privacy, pages 315–327,
2009.
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