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ABSTRACT
Group-signature schemes allow members within a predefined
group to prove specific properties without revealing more
information than necessary. Potential areas of application
include electronic IDs (eIDs) and smartcards, i.e., resource-
constrained environments. Though literature provides many
theoretical proposals for group-signature schemes, practical
evaluations regarding the applicability of such mechanisms
in resource-constrained environments are missing. In this
work, we investigate four different group-signature schemes
in terms of mathematical operations, signature length, and
the proposed revocation mechanisms. We also use the RELIC
toolkit to implement the two most promising of the inves-
tigated group-signature schemes—one of which is going to
be standardized in ISO/IEC 20008—for the AVR microcon-
troller. This allows us to give practical insights into the ap-
plicability of pairings on the AVR microcontroller in general
and the applicability of group-signature schemes in partic-
ular on the very same. Contrary to the general recommen-
dation of precomputing and storing pairing evaluations if
possible, we observed that the evaluation of pairings might
be faster than computations on cached pairings.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
ATmega128, AVR, group-signature schemes, pairing-based
cryptography, Type 1 pairings, Type 3 pairings

1. INTRODUCTION
Pairing-based cryptography has lead to the development

of new cryptographic protocols, for instance, identity-based
encryption [5], identity-based key agreement protocols [20],
and group-signature schemes [9]. While identity-based key
agreement protocols [14, 19, 23] have already been investi-
gated in resource-constrained environments, investigations
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regarding the applicability of group-signature schemes in
resource-constrained environments are still missing.

Group-signature schemes allow members of a predefined
group to sign messages on behalf of the group anonymously.
Potential scenarios for such schemes are, for instance, a proof
of the age of majority and anonymous entrance control sys-
tems. Both scenarios might be implemented on resource-
constrained devices, i.e., smartcards or electronic IDs (eIDs).
Therefore, the investigation regarding the implementation of
such schemes on embedded systems is of major interest for
protocol designers as well as developers. However, only mi-
nor work has been done in this area of research. For instance,
Canard et al. [7] modified the proposed signature scheme
by Delerablée and Pointcheval [11] in order to perform the
signature generation in less than 200 ms on an ATmega128
clocked at 7.37 MHz. However, they adapted the scheme
in such a way that the user sacrifices anonymity against a
powerful intermediary taking part in the computation of the
signature. Considering a scenario where a person wants to
prove a specific age to an authority without revealing the
exact date of birth, e.g., at a cigarette vending machine, the
employment of a powerful intermediary decreases the usabil-
ity. Furthermore, this approach might only be practical if
the used intermediary is something the user has control over.

Our contributions can be summarized as follows. First, we
investigate and compare different group-signature schemes
based on the number of executed operations, the signature
size, and the proposed revocation mechanisms. Second, by
employing the RELIC toolkit [2], a state-of-the-art library
for pairing-based cryptography, we also implement two of
the presented group-signature schemes on the AVR micro-
controller. This allows us to compare the performance of
two different types of pairings, i.e., Type 1 and Type 3 pair-
ings, in general and to provide insights into the application
of pairing-based protocols like group-signature schemes.

2. PRELIMINARIES
Let G1 = 〈g1〉, G2 = 〈g2〉, and GT be cyclic groups of

prime order n and their respective generators. Then a bi-
linear map e : G1 × G2 → GT is a function, such that
e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2, and a, b ∈ Z∗

n.
Furthermore, e(g1, g2) 6= 1 must hold. According to Gal-
braith et al. [12] four different types of pairings exist:
Type 1. G1 = G2, also known as symmetric pairings.
Type 2. G1 6= G2, an efficiently computable isomorphism
ψ : G2 → G1 exists, but hashing into G2 is infeasible.
Type 3. G1 6= G2, an efficiently computable isomorphism
ψ : G2 → G1 does not exist, but hashing into G2 is possible.



Type 4. G1 6= G2, an efficiently computable homomor-
phism ψ : G2 → G1 exists, and hashing into G2 is possible.
In this case G2 is a non-cyclic group of order n2.

Usually G1 and G2 are subgroups of points on elliptic
curves defined over a finite field Fq and an extension field
Fqk respectively. GT usually represents a subgroup of the
multiplicative finite field F∗

qk . The parameter q denotes the
size of the underlying field and k denotes the embedding de-
gree such that n|qk − 1, with k minimal. Note that the
discrete-logarithm problem (DLP) must be hard in all three
groups, and thus the group order n, the size of the under-
lying field q and the embedding degree k must be selected
appropriately for a specific security level [12].

3. GROUP-SIGNATURE SCHEMES
In 1991, Chaum and van Heyst [9] proposed the concept

of group-signature schemes (GSSs), which provide members
of a predefined group the ability to sign messages on be-
half of the group. A verifier is able to determine whether
a signature was created by an honest member of a specific
group, but does not learn the identity of the signer. How-
ever, in case of misbehavior a specific party is able to reveal
the identity of the signer, i.e., to open the signature. In
addition, a specific party should be able to suspend specific
users, such that they are not able to generate valid signa-
tures anymore. The involved parties of a group-signature
scheme can be summarized as follows:
Signer. A member of a group who is able to sign messages
on behalf of the group with the corresponding private key.
Verifier. Given a group’s public key, the verifier can deter-
mine whether a signature was created by a specific group.
Group manager and group master. An entity in charge
of performing the initial setup phase, i.e., to generate the
public parameters including the group’s public key. Meik-
lejohn [18] distinguishes between the group manager and
the group master. Group managers help joining users to
generate their secret keys, but do not learn the actual se-
cret keys. In contrast, group masters issue secret keys and,
hence, know the secret keys of all group members. Addi-
tionally, one of these two parties shall be able to reveal the
identity of a signer and to suspend specific users.

Depending on whether or not users can join a group after
performing the setup phase, one distinguishes between dy-
namic groups and static groups. Nevertheless, static group-
signature schemes can be implemented to look like dynamic
group-signature schemes by creating signing keys in advance
and distribute these keys as new members join the group [18].

Group-signature schemes allow for numerous scenarios that
require a proof of a specific property to gain access to spe-
cific services and locations. Examples include the proof of
a specific age, proof of possession of a valid driving license,
anonymous entrance control, and many more. All without
the ability to trace specific persons. Another important fea-
ture of group-signature schemes is the suspension of specific
users. The process of suspending specific users is also re-
ferred to as revocation and Boneh and Shacham [6] state
three approaches to implement the revocation mechanism.
Perform setup phase again. The group manager gen-
erates a new public key and all remaining group members
receive a corresponding signing key.
Update private keys. The group members are requested
to update their signing keys, but revoked users are not able
to compute a valid key anymore.

Verifier-local revocation. Verifier-local revocation (VLC)
overcomes the rather complicated solution of a recurring
setup phase. The verifier is given a list of revoked members
and hence the signing capabilities of unrevoked members
are not affected. The drawback of this mechanism is that
revoked members loose anonymity, which results from the
fact that the verifier is able to call the verification algorithm
twice, once with the revocation list and once without it. An-
other disadvantage of this approach is that the complexity
of verifying signatures grows with the size of the revocation
list. Hence, at some point it might be more feasible to per-
form the initial setup phase again and to distribute new keys
to all remaining group members.

3.1 Investigation of Group-Signature Schemes
In this section, we investigate some of the most recent

group-signature schemes. Since we concentrate on scenarios
where we are supposed to generate signatures on a resource-
constrained device, we investigate the process of generating
a signature only. The abbreviations of the following schemes
are derived from the authors’ names.

3.1.1 BBS
The security of the group-signature scheme by Boneh et

al. [4] is based on the strong Diffie-Hellman (SDH) assump-
tion [3], and the Decision Linear Assumption (DLIN). Based
on the Decision Linear assumption they define Linear En-
cryption (LE), which is used to hide the user’s certificate
within a group signature. The hidden certificate can be de-
crypted by the group manager only and thus can be used to
open a signature later on.

The public parameters are a bilinear map e : G1 × G2 →
GT , a hash function H : {0, 1}∗ → Zn, h ∈R G1, u, v ∈ G1,
g2 ∈R G2, g1 = ψ(g2), and w = gγ2 , for a secret γ (only
known to the issuer of the signing keys). The user’s private
key is denoted as (A, x), with Ax+γ = g1, and x ∈R Zn.
Type 2 pairings are to be used due to the efficiently com-
putable isomorphism ψ. Though one might also use Type 1
pairings1, in which case G1 = G2.

Signature Generation. The signer chooses α, β, rα, rβ ,
rx, rδ1 , rδ2 ∈R Z∗

n and computes the following values based
on a specific message M .

T1 = uα T2 = vβ T3 = Ahα+β

δ1 = xα δ2 = xβ R1 = urα

R2 = vrβ R4 = T rx1 u−rδ1 R5 = T rx2 v−rδ2

R3 = e(T3, g2)rxe(h,w)
−rα−rβ e(h, g2)

−rδ1−rδ2
c = H(M,T1, T2, T3, R1, R2, R3, R4, R5)
sα = rα + cα sβ = rβ + cβ sx = rx + cx
sδ1 = rδ1 + cδ1 sδ2 = rδ2 + cδ2

Boneh et al. [4] suggest to cache the evaluated pairings
e(h,w), e(h, g2), e(g1, g2), and e(A, g2). Hence, as outlined
below, the computation of R3 can be performed without the
need to evaluate a single pairing.

R3 = e(T3, g2)
rxe(h,w)−rα−rβ e(h, g2)

−rδ1−rδ2

= e(A, g2)
rxe(h, g2)

rx(α+β)−rδ1−rδ2 e(h,w)−rα−rβ

1According to Chatterjee et al. [8] this protocol cannot be
implemented using Type 1 pairings due to the XDH assump-
tion. However, BBS relies on the DLIN assumption and the
XDH assumption only allows for even shorter group signa-
tures than presented here [4, p 17].



The signature is s = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2), with
T1, T2, and T3 representing the encryption of the user’s cer-
tificate with respect to the group manager’s public key.

Revocation. The revocation requires the computation of a
new private key for each user remaining in the group, which
necessitates the computation of the isomorphism ψ. The
Revocation Authority publishes RL = {(A∗

i , xi)}, which rep-
resents a part of the certificate and the private key of the
revoked users, such that Ai = ψ(A∗

i ). Given one pair of the
revocation list (A∗

i , xi) ∈ RL and supposing a user’s private

key to be (A, x), a new private key (Â, x) is computed as:

Â = ψ(A∗
i )

1
x−xi

(
A

1
x−xi

)−1

The main drawback of this scheme is that the key issuer is in
possession of a list of all private keys. Thus, the key issuer
is able to sign messages on behalf of any group member
and the property of framing-resistance [10] does not hold
anymore. However, Boneh et al. [4] also proposed a JOIN
protocol where the user generates the private key and proves
correctness of the generated value to the key issuer. In this
case the key issuer does not learn the private key anymore.

3.1.2 BS-GS
Boneh and Shacham [6] presented a signature scheme which

is based on the strong Diffie-Hellman assumption (SDH),
and the Decision Linear assumption in groups with a bilin-
ear map. The advantage of this signature scheme is that
it provides a verifier-local revocation. However, the draw-
back is the rather complicated process of opening signatures.
Therefore, the group manager temporary adds all users, one
at a time, to the revocation list and verifies the signature.
The first user for whom the signature is invalid is consid-
ered to be the signer. Since Chatterjee et al. [8] claim this
protocol to be insecure due to the revocation check, which
might lead to a signature generated by a revoked user being
accepted as valid, we state their version of this protocol.

The public parameters are a bilinear map e : G1 × G2 →
GT , a hash functionH → Zn, a hash functionH0 → G2×G1,
g2 ∈ G2, g1 = ψ(g2), w = gγ2 —for a secret γ—and pgk =
(g1, g2, w). Since hashing into G2×G1 and the computation
of the isomorphism ψ is necessary, Type 4 pairings are to
be used. Each user’s private key consists of a tuple (Ai, xi),

with xi ∈R Z∗
n and Ai = g

1
γ+xi
1 .

Signature Generation. The signer chooses r, α, rα, rx,
rδ ∈R Z∗

n and computes the following values based on a
specific message M .

(û, v) = H0(gpk,M, r) u = ψ(û) T̂1 = ûα

T2 = Aiv
α δ = xiα R1 = urα

R̂3 = T̂ rx1 û−rδ R2 = e(T2, g2)rxe(v, w−rαg
−rδ
2 )

c = H(gpk,M, r, T̂1, T2, R1, R2, R̂3)
sα = rα + cα sx = rx + cxi sδ = rδ + cδ

The resulting signature is s = (r, T̂1, T2, c, sα, sx, sδ).

Revocation. A revocation list RL = {(Ai)} is used to re-
voke users. Thus, in addition to the verification of the signa-
ture a verifier has to check for each element A ∈ RL whether
e(T2A

−1, û) = e(v, T̂1) holds. In this case, the signature is
considered to be invalid because the signer has been revoked.

Signature generation as well as validation requires the
computation of the isomorphism ψ. Additionally, the sig-
nature generation requires two pairing evaluations and due
to the revocation check the signature verification requires
4 + |RL| pairing evaluations. Boneh and Shacham also pro-
pose a revocation check which is independent of the size of
the revocation list RL, but the drawback of this revocation
check is that the signer looses part of his anonymity.

3.1.3 DP-XSGS
Delerablée and Pointcheval [11] proposed the so called

eXtremely Short Group-Signature scheme (XSGS). Their
scheme is dynamic, i.e., allows users to join the group after
the initial setup phase. The security is based on the strong
Diffie-Hellman assumption (SDH) and the eXternal Diffie-
Hellman assumption (XDH) [4, 11]. If the used groups do
not satisfy the XDH assumption then they rely on the DLIN
assumption and claim that the signature enlarges a bit.

The public parameters are a bilinear map e : G1 × G2 →
GT , a hash functionH : {0, 1}∗ → Zn, 〈g2〉 ∈R G2, 〈g, h, k〉 ∈
G2, g1 = ψ(g2), and w = gγ2 , with γ being known only to the
group manager. The private key of each user is denoted as
(A, x, y), such that Ax+γ = g1h

y with γ being known only
to the group manger, and x, y ∈R Z∗

n. Type 2 pairings are
to be used due to the computable isomorphism ψ.

Signature Generation. The signer chooses α, β, rα, rβ ,
rx, rz ∈R Z∗

n and computes the following values.

T1 = kα T2 = Ahα T3 = kβ T4 = Agβ

R1 = krα R3 = krβ R4 = hrα

g
rβ z = xα+ y

R2 = e(T2, g2)rxe(h,w)−rαe(h, g2)−rz

c = H(m,T1, T2, T3, T4, R1, R2, R3, R4)
sα = rα + cα sβ = rβ + cβ sx = rx + cx sz = rz + cz

The resulting signature is s = (T1, T2, T3, T4, c, sα, sβ , sx, sz),
with T1, T2, T3, and T4 representing the encryption of the
user’s certificate and allow the group manager to determine
the identity of the signer.

Revocation. The revocation of a user requires the remain-
ing users to update their private keys, which involves the
computation of the isomorphism ψ.

The process of signature generation does not require the
evaluation of a pairing because all pairings can be cached.
In case one does not cache the pairings, the computation of
R2 might be collapsed as R2 = e(T2, g2)rxe(h,w−rαg−rz2 ).

3.1.4 HLCCN
The scheme by Hwang et al. [15] is based on the exter-

nal Diffie-Hellman (XDH) assumption, and the modified q-
Strong Diffie-Hellman (SDH+) assumption. A linking key
allows to determine whether two signatures stem from the
same signer, but the identity of the signer remains secret.

The public parameters are a bilinear map e : G1 × G2 →
GT , a hash function H : {0, 1}∗ → Zn, g, u, g1, g2 ∈R G1,
h1 ∈R G2, w = uη, d = uξ, and hθ = hθ1, with θ ∈R Z∗

n being
the master’s issuing key and η, ξ ∈ Z∗

n being the master’s
opening key. The user’s signing key is (A, x, y, z), with A ∈
G1, and x, y, z ∈ Z∗

n. Since a computable isomorphism ψ is
not required for this scheme, Type 3 pairings can be used.



Table 1: Comparison of the presented group-signature schemes

BBS [4] BS-GS [6, 8] DP-XSGS [11] HLCCN [15]

Assumptions SDH, DLIN SDH, DLIN SDH, XDH SDH+

Revocation Key update Verifier local Key update Key update
Isomorphism required Yes Yes Yes No
Hashing into G2 required No Yes No No
Pairing Type 1, 2 Type 4 Type 2 Type 3

Public parameters
G1 4 1 4 6
G2 2 a 2 2 2
GT 3 0 3 4

Private key
Z∗
n 1 1 2 3

G1 1 1 1 1

Sign

R in Z∗
n 7 5 6 5

A in Z∗
n 9 3 6 5

M in Z∗
n 8 4 6 6

M in G1 3 1 3 3
E in G1 9 2 8 7
M in G2 0 2 0 0
E in G2 0 5 0 0
M in GT 2 1 2 4
E in GT 3 1 3 5
Pairing 0 2 0 0
Isomorphism ψ 0 1 0 0
Hashing into G2 0 1 0 0

Verify

R in Z∗
n 0 0 0 0

A in Z∗
n 2 1 0 0

M in Z∗
n 0 0 0 0

M in G1 4 1 5 3
E in G1 8 3 7 5
M in G2 1 3 1 1
E in G2 2 6 2 2
M in GT 3 2 + |RL|b 3 4
E in GT 3 1 3 4
Pairing 1 4 + |RL| 1 1
Isomorphism ψ 0 2 0 0
Hashing into G2 0 1 0 0

Signature size
Z∗
n 6 5 5 5

G1 3 1 4 3
G2 0 1 0 0

aIn case G1 = G2 the number of elements in G1 and G2 as well as the number of operations in G1

and G2 is accumulated. Though, in case g1 = ψ (g2) this might be counted as one element.
b|RL| denotes the size of the revocation list.

Signature Generation. The signer chooses α, rα, rx, rγ ,
ry ∈R Z∗

n and computes the following values.

D1 = uα D2 = Awα D3 = gydα γ = xα− z
R1 = urα R3 = grydrα

R2 = e(D2, h1)rxe(w, hθ)
−rαe(w, h1)−rγ e(g2, h1)ry

c = H(M,D1, D2, D3, R1, R2, R3)
sα = rα + cα sx = rx + cx sγ = rγ + cγ sy = ry + cy

The resulting signature is s = (D1, D2, D3, c, sα, sx, sγ , sy).

Revocation. The revocation requires each user to update
his private key. The process of signature generation does
not require the evaluation of a pairing because all pair-
ings can be cached. In case one does not cache the pair-
ings, the computation of R2 might be collapsed as R2 =
e(Drx

2 w−rγ g
ry
2 , h1)e(w−rα , hθ).

3.1.5 Comparison of the Group-Signature Schemes
Table 1 provides a comprehensive comparison of the above

presented group-signature schemes, including the number of
group operations for the signature generation and verifica-
tion. The executed operations are abbreviated with R for
selecting a random element, A for addition, M for multi-
plication, E for exponentiation, and pairing for the evalua-
tion of a pairing. Note that if G1 and G2 are subgroups of
points on the elliptic curve E(Fq) and E(Fqk ), the multipli-

cation (M) denotes the addition of two points and the ex-
ponentiation (E) denotes the multiplication of a point with
a scalar. Further enhancements regarding the implementa-
tion of the protocol might be achieved by considering multi-
exponentiation techniques, i.e., the simultaneous multipli-
cation of two points with a scalar followed by the addition
of the resulting two points. The size for public parameters,
private keys, and resulting signatures are expressed in terms
of elements of specific groups since the precise size depends
on the chosen curve.

4. PRACTICAL IMPLEMENTATION
We employed the RELIC2 toolkit [2] for the evaluation

of group-signature schemes on the AVR microcontroller. A
slightly modified implementation of SimulAVR [1] was used
to determine cycle-accurate execution times on a modified
ATmega128 with 16 KB of RAM.

RELIC provides low-level implementations for binary-field
arithmetic as well as for prime-field arithmetic to be used on
the AVR. Based on these low-level implementations differ-
ent curves can be used for Type 1 and Type 3 pairings,
respectively. For Type 1 pairings RELIC implements the
ηT (eta-t) pairing over supersingular curves with an em-

2We used avr-gcc-4.5.3 to compile of RELIC (rev. 1460).



Table 2: Performance of arithmetic operations
Type 1 pairing over F2m Type 3 pairing over Fp
m = 271 m = 353 158-bit prime

A in G1 284 000 439 000 267 000
M in G1 4.8 · 106 8.5 · 106 6.5 · 106

A in G2 284 000 439 000 388 000
M in G2 4.8 · 106 8.5 · 106 31.3 · 106

M in GT 111 000 170 000 438 000
E in GT 7.9 · 106 15.2 · 106 83.2 · 106

Pairing 14.0 · 106 27.1 · 106 62.7 · 106

bedding degree k = 4. For the AVR the supported curves
are E(F2271) with the irreducible polynomial f(x) = x271 +
x207+x175+x111+1 and E(F2353) with the irreducible poly-
nomial f(x) = x353 + x69 + 1. For Type 3 pairings RELIC
implements the optimal ate pairing over non-supersingular
BN-curves with an embedding degree k = 12, defined over
a 158-bit prime field Fp. In case of BN-curves the prime
modulus p of the underlying field Fp can be parameter-
ized as p(x) = 36x4 + 36x3 + 24x2 + 6x + 1. The 158-bit
prime curve—denoted as BN-158 curve—is parameterized
by x = 0x4000000031 in base 16.

4.1 Evaluation of Type 1 and Type 3 Pairings
As already pointed out by Galbraith et al. [12], Type 3

pairings offer good performance and flexibility for high-security
parameters. Furthermore, Scott [21] claims that Type 1
(symmetric) and Type 3 (asymmetric) pairings are the most
practical ones, thus we stick to these types. However, in
2013 the discrete-logarithm problem (DLP) over binary fi-
nite fields (and finite fields of small characteristic in gen-
eral) has been attacked seriously [13, 17]. A comprehensive
overview of these technical advances can be found in [22].
Smart [22] also claims this being the “death knell for pair-
ing based cryptography on Type-1 curves”. Hence, these
attacks should be kept in mind when considering the imple-
mentation of Type 1 pairings. Before the announcement of
these attacks, Type 1 pairings implemented on supersingu-
lar curves over F2271 and F2353 were considered to provide
a security level of 64 and 80 bits, respectively. Consider-
ing the recent attacks these security levels might be revised
accordingly, and hence we provide the performance evalua-
tion for Type 1 pairings only for the sake of completeness.
Nevertheless, Type 3 pairings implemented over the BN-158
curve still provide 78 bits of security.

Table 2 outlines the performance evaluation of Type 1
pairings employing two different binary fields, i.e., F2271 and
F2353 , and the performance of Type 3 pairings employing a
158-bit prime field Fp. Note that for Type 1 pairings the per-
formance of operations in G1 is equal to the performance of
operations in G2 since both groups are the same, i.e., sym-
metric. Recall that now we are talking about G1 and G2

being subgroups of points on elliptic curves defined over the
finite field Fq and an extension field Fqk , respectively. Thus,
the addition in G1 and G2 corresponds to the multiplication
(M) of elements in G1 and G2 within the group-signature
schemes outlined in Section 3. Furthermore, the multiplica-
tion in G1 and G2 corresponds to the exponentiation (E) of
elements in G1 and G2 within the group-signature schemes.

Figure 1 illustrates the performance evaluation for the
most time-consuming operations. According to this figure
one would prefer Type 1 pairings due to the better perfor-
mance. Szczechowiak et al. [23] also suggest the usage of
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Figure 1: Performance evaluation of Type 1 pairings
over F2271 and F2353 , and Type 3 pairings over a 158-
bit prime field Fp.

Type 1 pairings over F2271 due to the faster computations.
However, as already pointed out above, the latest advances
in attacks on the DLP in characteristic 2 finite fields empha-
size potential security issues in Type 1 pairings in general
and, thus, Type 3 pairings seem to be the desirable choice
for pairing implementations.

4.2 Possible Performance Optimization
Considering the time-consuming operations in Table 2 let

us recall that the computation of a pairing, for instance,
e(u, v)a, with u, v, and a known in advance, might be done
in multiple different ways:

• Perform an exponentiation in G1 and evaluate the pair-
ing afterwards: e(ua, v).

• Perform an exponentiation in G2 and evaluate the pair-
ing afterwards: e(u, va).

• Cache the evaluated pairing and perform an exponen-
tiation in GT : e(u, v)a.

Given the two alternatives of performing an exponentia-
tion either in G1 or G2 one would prefer the former, since
usually the exponentiation in the smaller group of G1 is
faster than the exponentiation in G2. Though protocol de-
signers [4, 11, 15] suggest to cache evaluated pairings due
to performance reasons, the presented results indicate that
the evaluation of pairings yields faster timings, at least in
case of asymmetric pairings. Thus, we conclude that the
process of signature generation might be enhanced by per-
forming an exponentiation in G1, followed by the evaluation
of the pairing. Additionally, the evaluation of pairings re-
duces the storage required for the public parameters, since
the evaluated pairings, i.e., elements in GT , are not cached
anymore.

4.3 Comparison of BBS and HLCCN
We implemented the BBS [4] and the HLCCN3 [15] group-

signature schemes since these can be implemented using
Type 1 and Type 3 pairings, respectively. This allows us to
compare the performance of group-signature schemes imple-
mented over symmetric pairings and asymmetric pairings.

3The HLCCN scheme is going to become an ISO standard,
specified in ISO/IEC 20008 Information technology - Secu-
rity techniques - Anonymous digital signatures [16].
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Figure 2: Overall RAM and ROM usage as well as
execution time of the two investigated schemes.

Due to the observed timings in Subsection 4.1 we imple-
mented the BBS scheme employing cached pairings and we
evaluate the pairings in case of the HLCCN scheme. Fig-
ure 2 illustrates the overall execution time in cycles as well
as the memory footprint for each of the two investigated
group-signature schemes. Considering a clock frequency of
7.4 MHz this would result in about 27 seconds for the sig-
nature generation in case of the HLCCN signature scheme.
However, considering this scheme being implemented on an
ATxmega with a clock frequency of 32 MHz this yields exe-
cution times of about 6 seconds and might be even faster due
to the ATxmega being a faster microcontroller than the AT-
mega128. Nevertheless, performance optimizations are nec-
essary in order to achieve acceptable execution times of such
complex protocols on the AVR. Besides the introduction of
powerful intermediaries as suggested by Canard et al. [7],
employing instruction-set extensions for the finite-field arith-
metic might also lead to acceptable execution times.

5. CONCLUSION
In this work, we compared four different group-signature

schemes and provided practical insights into the implemen-
tation of group-signature schemes on the AVR microcon-
troller. Using the RELIC toolkit, we observed that in case
of Type 3 pairings the evaluation of a pairing is faster than
performing an exponentiation on a cached pairing. Thus,
contrary to the suggestion of protocol designers, protocols
might gain a performance speedup if pairings are evalu-
ated instead of being cached. Furthermore, our practical
observations showed that the ATmega128—even clocked at
16 MHz—might not be able to handle such complex crypto-
graphic protocols under reasonable timing constraints. Even
on the ATxmega256, which might be clocked at 32 MHz the
HLCCN scheme would require about 6 seconds for the com-
putation of a signature, which is still too long to be consid-
ered practicable. Hence, in order to speed up the evalua-
tion of pairings and to facilitate more complex protocols in
such resource-constrained environments one might consider
to implement finite-field arithmetic in hardware.
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