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Abstract. Cache attacks are a special form of implementation attacks and focus
on the exploitation of weaknesses in the implementation of a specific algorithm.
We demonstrate an access-driven cache attack, which is based on the analysis of
memory-access patterns due to the T-table accesses of the Advanced Encryption
Standard (AES). Based on the work of Tromer et al. [20] we gather the cache-
memory access patterns of AES T-table implementations and perform a pattern-
matching attack in order to recover the used secret key. These T-tables usually
do not start at memory addresses which are mapped to the beginning of a spe-
cific cache line. Thus, focusing on disaligned AES T-tables allows us to recover
the whole secret key by considering only the first round of the AES. We apply
the presented cache attack on a Google Nexus S smartphone, which employs a
Cortex-A8 processor and runs a fully-functioning operating system. The attack
is purely implemented in software and the only requirement is a rooted mobile
device. To the best of our knowledge, we are the first to launch an access-driven
attack on an ARM Cortex-A processor. Based on our observations of the gathered
access patterns we also present an enhancement, which in some cases allows us
to recover the secret key without a subsequent brute-force key search.

Keywords: AES, ARM Cortex-A8, disaligned AES T-tables, memory-access
pattern attack.

1 Introduction

Mobile devices have become an ubiquitous part of our everyday life. The wide-spread
usage of these devices inevitably leads to private and sensitive information being stored
on them. In order to protect these data against adversaries cryptographic primitives and
cryptographic protocols are implemented. Security and privacy enhancing methodolo-
gies include, for instance, disk encryption and the encrypted communication over the
Internet. Standardized cryptographic algorithms, i.e., the Advanced Encryption Stan-
dard (AES), are applied to cope with these challenges.

Though, the AES is considered to be mathematically secure, a specific implemen-
tation of this algorithm does not necessarily have to be secure. Implementation attacks
explicitly focus on the exploitation of implementation weaknesses by considering infor-
mation leaking through side channels, e.g., variations of the execution time or the power
consumption based on different inputs. A special form of these implementation attacks
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are cache attacks, which aim at the exploitation of different access times resulting from
the fact that data within the central-processing unit (CPU) cache can be accessed an
order of magnitude faster than data located within the main memory.

Cache attacks can be classified into three main categories: (1) time-driven attacks,
(2) access-driven attacks, and (3) trace-driven attacks. All three types aim at recov-
ering the secret key of a specific cryptographic implementation and only differ in the
amount of information available to recover the key. While time-driven attacks focus on
the investigation of the overall encryption time, access-driven and trace-driven attacks
require a more fine-grained knowledge about memory accesses and the corresponding
cache hits and misses. Cache attacks have been launched successfully on a variety of
desktop computers [6, 9, 11, 20, 25] and, recently, also the investigation on mobile and
embedded devices has started [8, 10, 23]. However, these investigations focus either on
microcontrollers or on devices that do not feature a full-blown operating system.

The rising popularity of mobile devices in our everyday life clearly states the need
for the investigation of such cache attacks on modern mobile devices in a realistic sce-
nario. In this work, we close this gap and present an access-driven cache attack based
on the analysis of cache-access patterns. We also practically apply the presented at-
tack on a Google Nexus S smartphone, which is an Android-based smartphone with
an ARM Cortex-A8 processor. Moreover, we focus on the exploitation of information
leaked through disaligned AES T-tables. According to our knowledge, we are the first
to present an access-driven attack on ARM Cortex-A series processors, which employ
a random-replacement policy.

The presented paper is organized as follows. In Section 2 we outline related work
in the field of cache attacks. We introduce the required preliminaries and notations in
Section 3. Section 4 denotes the main part of this paper and presents our attack ap-
proach. In Section 5 we state an observation which allows an attacker to further reduce
the remaining key space. Section 6 illustrates the results of the proposed attack on the
ARM Cortex-A8 processor. Finally we conclude this work in Section 7.

2 Related Work

In 1996, Kocher [13] demonstrated the exploitation of timing information in order to re-
cover secret keys of cryptographic implementations. He also claimed that—due to com-
piler optimizations, RAM cache hits, and many other factors—timing-independent im-
plementations are extremely difficult to achieve. Since Kocher’s groundbreaking work
implementation attacks evolved enormously. One specific form of implementation at-
tacks are cache attacks, which can be separated into three categories: time-driven at-
tacks, access-driven attacks, and trace-driven attacks.

Time-Driven Attacks. These attacks require only minor knowledge of the implementa-
tion and the hardware architecture under attack. Depending on the provided input the
implementation might leak different timings. Thus, the basic idea of time-driven attacks
is to gather timing information of many encryptions and to perform statistical correla-
tions in order to recover the used secret key. Attacks in this category typically require
far more measurement samples than attacks within the following two categories.
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Access-Driven Attacks. The purpose of these attacks is to determine which cache lines
or cache sets have been accessed during the encryption. Hence, knowledge of the loca-
tion of the precomputed S-Boxes or T-tables within the memory as well as information
about the cache architecture is necessary. However, fewer measurement samples are
necessary than in case of time-driven attacks.

Trace-Driven Attacks. For these attacks a detailed cache profile based on the infor-
mation of every single memory access is necessary, i.e., for every look-up operation
an attacker knows whether it resulted in a cache hit or a cache miss. As suggested by
Aciiçmez and Koç [1] performance counters of modern CPUs might be used to establish
such a memory-access profile.

The exploitation of information leaked through cache-memory access times started
in the year 2000. Kelsey et al. [12] explicitly suggested the exploitation of cache-
hit ratios of cryptographic implementations that employ large S-boxes. Followed by
Page [18] and Tsunoo et al. [21, 22] the exploitation of cache-based side-channel infor-
mation of the Data Encryption Standard (DES) began. With the introduction of the AES
increased attention has been given to the development of cache attacks against this sym-
metric cipher. For instance, Bertoni et al. [7] simulated a first-round attack on the AES
by inducing cache misses and using power traces to determine when and where these
cache misses occurred. Lauradoux [14] presented a collision attack on the AES based
on power traces. In 2006, Bonneau and Mironov [9] also presented a cache-collision
attack. However, their approach was based on timing information. The aim of cache-
collision attacks is to deduce linear relations between look-up indices due to collisions
between these indices. Bernstein [6] followed a similar approach and investigated the
overall encryption time. Therefore, he correlated the encryption times of plaintexts un-
der a known AES key with the encryption times under an unknown AES key.

Tromer et al. [20] (first presented in 2005) paved the way for access-driven attacks.
They suggested two approaches in order to gather cache-memory accesses: (1) Prime
and Probe as well as (2) Evict and Time. The approach of Prime and Probe is to detect
accessed cache sets through the investigation of memory accesses within the attacker’s
address space. In contrast, Evict and Time tries to determine the accessed cache sets
through the encryption time. Neve and Seifert [16] suggested the investigation of ci-
phertexts and the corresponding cache accesses related to the AES T-table used within
the last round. They adapted the elimination and non-elimination method suggested
by Tsunoo et al. [21]. Zhao et al. [25] also presented an access-driven attack on the
first and the second round of the AES encryption, respectively. Based on the Prime
and Probe approach of Tromer et al. [20] they gathered unaccessed cache sets and re-
duced the set of possible keys. Overall, they claimed to reduce the key space from 128
bits to 18 bits with 350 AES encryptions. Though, they state that disaligned T-tables
leak more information about the key bits, they also consider the disalignment of AES
T-tables as a complication. Furthermore, Zhao et al. investigated the disalignment of S-
Boxes in an access-driven attack on Camellia [26] and a simulated trace-driven attack
on CLEFIA, and AES [24]. In 2011, Gullasch et al. [11] suggested the exploitation of
the Linux scheduler to gather memory accesses of a victim process that performs AES
encryptions. ARM7 microcontrollers and ARM Cortex-A8 processors have been at-
tacked recently by Bogdanov et al. [8], Gallais and Kizhvatov [10], and Weiß et al. [23].
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However, these attacks represent trace-driven as well as time-driven approaches and do
not consider a full-blown operating system. In this paper we focus on ARM Cortex-A
processors running a fully-functioning operating system.

3 Requirements and Preliminaries

In this section we briefly outline the required preliminaries in order to launch the pre-
sented cache-access pattern attack on the ARM Cortex-A8 processor. Firstly, we intro-
duce the ARM architecture with a focus on the performance-monitor registers and the
cache-memory architecture. Secondly, we outline the basics of the AES and finally we
cover necessary notations which are used throughout this paper.

3.1 ARM Cortex-A Series Processors

Currently, most mobile platforms employ 32-bit ARM processors. For instance, the
ARM Cortex-A series processor [5] was designed explicitly for mobile devices with
limited power resources and hence this processor architecture is the most commonly
used architecture in today’s smartphones and tablet computers. In order to overcome
the gap between the high CPU clock frequencies and the slow main-memory access
times, ARM Cortex-A processors also employ CPU caches. CPU caches are used to
hold recently used data and data probably to be accessed in the near future close to the
CPU. Since the main memory is usually larger than the cache memory, a mapping has to
be established. For instance, the most commonly employed cache-mapping technique is
the set-associative mapping. A set-associative cache is divided into equally sized cache
sets, each consisting of k cache lines. Such a cache is said to be k-way associative.
Blocks from main memory are first mapped to a unique set and then the block can be
placed in any line within this set. An algorithm decides which data is to be replaced,
i.e., evicted from the cache in order to free up a cache line for new data. ARM proces-
sors usually implement a random-replacement policy, which means that data is evicted
randomly from the cache. In contrast, most modern desktop processors implement a
deterministic-replacement policy.

The investigated ARM Cortex-A8 processor is a single-core processor with a clock
frequency of 1 GHz. It employs a 4-way set associative L1 cache with a cache-line size
of 64 bytes and a total size of 32 KB. According to the ARM Architecture Reference
Manual [2], the Cortex-A series also features performance-monitor registers, imple-
mented within a special coprocessor. These registers are capable of counting different
types of events. For our purposes, the only register of concern is the Cycle Count Reg-
ister (PMCCNTR), which is a 32-bit register that counts core clock cycles. This register
allows us to measure the execution times of AES encryptions with a sufficiently high
resolution in order to distinguish T-table accesses within the cache memory from T-
table accesses within the main memory. Unfortunately, it is accessible in privileged
mode only, except for the case that access to this register is explicitly granted to un-
privileged processes. Hence, a kernel module might be loaded by the attack application
in order to allow unprivileged applications to access this register. For further informa-
tion about the Cycle Count Register and how to enable this register to be accessible by
unprivileged applications, we refer to [2, 3, 4].
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3.2 Advanced Encryption Standard

In 2000, the National Institute of Standards and Technology (NIST) announced Ri-
jndael, designed by J. Daemen and V. Rijmen, as the Advanced Encryption Standard
(AES) [15]. The AES is a block cipher operating on a 128-bit state, denoted as a series
of bytes s = {s0, . . . , s15}, which is usually represented as a matrix of four columns
and four rows, respectively. Basically, the AES consists of four round transformations:
SubBytes, ShiftRows, MixColumns, and AddRoundKey. After the initial AddRoundKey
transformation nr − 1 rounds of the before mentioned round transformations are ap-
plied, followed by the final round nr that simply omits the MixColumns transformation.
The number of rounds nr to be performed depends on the key length and in case of
AES-128 the number of rounds is defined to be nr = 10.

Software implementations of the AES usually employ look-up tables in order to
overcome the computation of the complex round transformations and to improve the
performance of this block cipher. These precomputed look-up tables combine the round
transformations, excluding AddRoundKey, and facilitate the implementation of the en-
cryption and decryption algorithm through simple look-up operations in combination
with XOR operations. Equation 1 illustrates the software implementation of the AES
using look-up tables. The initial state bytes are computed as s0i = pi ⊕ k0

0, with p rep-
resenting the plaintext and k0 the initial round key. The look-up tables are denoted as
T0, . . . ,T3 and consist of 256 4-byte elements, resulting in a total size of 1 KB for each
T-table. Starting with the initial state byte s0i the computations outlined in Equation 1 are
performed nr − 1 times. Due to the fact that the MixColumns transformation is omitted
within the last round, other T-tables are used within the last round. The resulting state
s, after performing the last round, represents the ciphertext. The combination of large
look-up tables and key-dependent look-up indices makes the AES highly prone to cache
attacks. Due to reasons of simplicity we refer to the initial state bytes as si = pi ⊕ ki
within the following sections.
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We launched the presented attack against the T-table implementation of OpenSSL
0.9.7a [17], though newer versions, for instance, OpenSSL 1.0.1c might neither resist
this attack since the T-table implementation is typically the same. The only difference
is that the last round might either use the T-tables T0, . . . ,T3 in a slightly adapted way
or a separate T-table T4.

3.3 Notations and Definitions

In this subsection we introduce the used notations and definitions. In particular, we
outline the notion of disaligned AES T-tables.
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Definition 1. According to Tromer et al. [20] we denote the maximum number of T-
table elements per cache line as δ. Supposing a cache-line size of 64 bytes and a table-
element size of 4 bytes δ = 64

4 = 16.

Definition 2. We denote the number of cache sets a T-table is supposed to take as γ.
Since a T-table consists of 256 elements we define γ = 256

δ for aligned T-tables and
γ = 256

δ + 1 for disaligned T-tables.
We consider an AES T-table to be aligned if it starts at a memory address which is

mapped to the beginning of a cache line. In this case the first cache line related to a spe-
cific AES T-table holds exactly the first δ table elements, which is the optimum. How-
ever, in practice we observe disaligned T-tables. This means that the memory address
of a precomputed look-up table does not correspond to the beginning of a cache line.
Hence, the first cache line related to a specific T-table holds less than δ table elements.
The investigated mobile device revealed that even a disalignment of δ − 1 is possible,
i.e., the first or the last cache line holds only one element, which might (ideally) reveal
the whole secret key without a subsequent brute-force attack. As opposed to the state-
ment by Rebeiro et al. [19] that such a disalignment of T-tables must be explicitly forced
by the programmer, we observed disaligned T-tables though not explicitly forced. This
might be a result of the used compiler, i.e., arm-linux-androideabi-gcc (GCC) 4.4.3 in
our case. A proper alignment of AES T-tables can be achieved by declaring the T-tables
as __attribute__((aligned(64))) static const uint32_t Te0[256]. In
general aligning T-tables appropriately can be done by specifying a number which is a
multiple of the cache-line size.

In case the T-table is properly aligned the number of recoverable key bits per key
byte is limited to the upper 8 − log2 δ bits, i.e., the upper 4 bits in case of a cache-line
size of 64 bytes. Observe that the look-up indices within the first round of the AES
are denoted as si = pi ⊕ ki for byte i. In case of δ = 16 the first cache set contains
the corresponding T-table elements of the look-up indices si ∈ {0x00, . . . ,0x0F}.
Thus, given information about the accessed cache set—and hence information about
the accessed look-up index si—and the corresponding plaintext byte pi yields at least
the upper four bits of the secret key ki. In practice we usually observed disaligned T-
tables, which means that the first cache line related to a specific T-table holds less than
δ elements and hence more key bits might be recovered.

Definition 3. We denote the number of T-table elements within the first cache line
related to a specific T-table as α ∈ {1, . . . , δ}.

4 Attack Concept

As the name already suggests, the presented attack belongs to the class of access-driven
attacks. Our attack approach focuses on the exploitation of disaligned AES T-tables and
we demonstrate that disaligned T-tables are especially vulnerable, i.e., in some cases
allow an attacker to recover the whole secret key without a single brute-force compu-
tation. The attack is purely implemented in software and the only prerequisite for our
attack to work is a rooted mobile device to load the kernel module, which permits access
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to the Cycle Count Register to unprivileged applications by setting the appropriate bit
within a control register. Observe that the attack itself does not require root access since
setting the appropriate bit—in order to allow unprivileged applications to access the
Cycle Count Register—might be done within a separate application. Furthermore, this
bit only needs to be set once after powering up the device. The basic idea is to gather
memory-access patterns of AES encryptions and to match them against precomputed
patterns in order to gain knowledge of the used secret key.

The scenario for the following cache-access pattern attack is as follows. We are able
to trigger AES encryptions with an unknown but fixed key and a chosen plaintext. Due
to reasons of simplicity we implemented the AES encryption directly within the attack
application. The chosen plaintext ensures the encryption of a specific byte value when
attacking the corresponding key byte. Furthermore, we assume to be able to measure
the encryption time with a sufficiently high resolution, i.e., to distinguish main-memory
accesses from cache-memory accesses, and to be able to gather the memory-access
patterns in an appropriate way. Tromer et al. [20] suggest two different approaches in
order to gather the memory-access patterns: (1) Prime and Probe, and (2) Evict and
Time. Though they state Prime and Probe as being extremely efficient, we employ the
Evict and Time approach, for we consider it more appropriate for caches with a random-
replacement policy. Recall that the random-replacement policy makes it more difficult
to initialize a whole cache set to specific elements, which is necessary for the Prime
and Probe approach (accessing a specific element might evict a previously loaded one).
Thus, further investigations might be done to reveal whether the Prime and Probe ap-
proach also leads to more efficient attacks on systems with a random-replacement pol-
icy. The idea of the Evict and Time approach is to observe cache evictions based on
the encryption time itself. Therefore, the attacker allocates a data structure which is as
large as the L1 data cache1. The attacker starts by triggering the encryption of a plain-
text p and afterwards evicts a specific cache set by accessing the appropriate elements
within the allocated data structure. Finally, by measuring the encryption time of the
same plaintext p again, the attacker might determine whether a cache set required for
the encryption of plaintext p has been evicted or not.

The attack is composed of the following steps: (1) gather cache-access patterns, (2)
extract a pattern vector, (3) compute possible access patterns, (4) extract possible key
candidates, and optionally (5) perform a brute-force key search on the remaining key
space. The only step which must be executed on the attacked device is step (1). Hence,
we also refer to this step as online phase. The following subsections outline these steps
in more detail.

4.1 Gather Cache-Access Patterns

In order to gather the memory-access patterns for all key bytes ki|i∈{0,...,15} we set pi =
0x00, choose the rest of the plaintext randomly, and perform the following steps. First,

1 In order to ensure the eviction of a specific cache set with an appropriate probability we use
a data structure which is 3 times the size of the L1 cache. In this case the probability for a
specific cache line still being present within a cache set after accessing all 12 elements which
map to this cache set is

(
3
4

)12
= 0.0318.
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Fig. 1. Gathered measurement score (original)
for k5 = 0xF3. Brighter areas represent slower
encryptions after the eviction of the correspond-
ing cache set.

Fig. 2. Normalized measurement score for
k5 = 0xF3. Brighter areas represent slower
encryptions after the eviction of the correspond-
ing cache set.

we encrypt the chosen plaintext p to load the necessary T-table elements into the data
cache and the corresponding instructions into the instruction cache. This step is referred
to as warm-up step. Second, we encrypt the plaintext p again and this time we measure
the encryption time. Afterwards, we evict a specific cache set swhere the corresponding
T-table Tj of the attacked key byte ki resides2. Note that i ≡ j mod 4. Subsequent to
this eviction we measure the encryption time of the same plaintext p again. Hence, the
second measurement provides some kind of measurement score, of which we keep track
of in a data structure ti[b][s], with b ∈ {0x00, . . . ,0xFF} representing all possible byte
values pi might take, and s ∈ {0, . . . , γ − 1} representing the evicted cache set of T-
Table Tj . To eliminate noise and to retrieve stable measurement results the encryption
of random plaintexts with pi = 0x00 and the eviction of a specific cache set s is
performed R times. Afterwards, we advance to the next possible byte value pi = 0x01
and perform the same steps again, until we finally reach pi = 0xFF.

More formally, for each possible plaintext byte pi|i∈{0,...,15} ∈ {0x00, . . . ,0xFF}
of the plaintext p we establish a data structure ti[b][s]. The purpose of this data struc-
ture is to store for which specific plaintext bytes pi = b the performance decreases
after evicting a specific cache set s. There might be multiple different values to be
used as a measurement score. In our case we retrieved stable measurement results, and
hence distinctive access patterns, by simply comparing the encryption time of the sec-
ond encryption with the encryption time of the third encryption. Thus, ti[b][s] simply
counts the number of encryptions where the performance decreased, i.e., a cache miss
occurred. Figure 1 illustrates an example of such a data structure after performing the
above outlined steps for a specific key byte, e.g., k5 with R = 150 iterations in this
case. Figure 2 illustrates the normalized measurement score with the mean of the corre-
sponding column subtracted from each value. The vertical axis shows all possible bytes

2 We assume this information to be known in order to simplify the explanation. Basically, this
information might be retrieved in a simple pre-processing stage.
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the plaintext byte p5 might take and the horizontal axis illustrates the evicted cache
set s. Recall that the index used to access a precomputed T-table element si = pi ⊕ ki
is composed of 8 bits. On our test device we have a cache-line size of 64 bytes and thus
the lower log2 δ = log2

64
4 = 4 bits determine the T-table element within a cache line.

The remaining upper 8 − log2 δ = 4 bits determine the cache set of the corresponding
index. Figure 1 illustrates that given a plaintext byte p5 ∈ {0xF0, . . . ,0xFF}, and a
key byte k5 = 0xF3 the resulting look-up indices map into cache set 0. For aligned
tables there exist 16 unique patterns, which can be used to reduce the initial key space
from 128 bits to 64 bits. In this case the plot in Figure 1 only reveals the upper 4 bits of
the key byte, e.g., k5 ∈ {0xF0, . . . ,0xFF}.

4.2 Extract a Pattern Vector

From the measurement scores ti[b][s] gathered in the previous phase we extract a pattern
vector. Therefore, we compute the mean and the standard deviation of each cache set
s, i.e., the meani,s and the stdi,s of the columns within the matrix ti[b][s]. We apply
the following empirically detected threshold: If the measurement score of a specific
byte value b within a specific cache set s is greater than the meani,s plus the standard
deviation stdi,s, we assume that this index has been accessed during the encryption.
Consequently, if the measurement score is below this threshold, we assume that this
index has not been accessed during the encryption. Equation 2 outlines the extraction
of a pattern vector for a specific cache set s and an attacked byte i.

pattern vectori[b][s] =

{
1, iif ti[b][s] > meani,s + stdi,s

0, otherwise.
(2)

4.3 Compute Possible Access Patterns

As we have seen in Subsection 4.1, the output of the online phase clearly reveals
a visible memory-access pattern. In order to exploit the information leaked through
these access patterns we use the following approach. For a hypothetical key byte h ∈
{0x00, . . . ,0xFF}, a number of T-table elements per cache line δ, and a disalignment
d ∈ {0, . . . , δ−1} we compute the memory-access patterns within a specific cache set.
Recall that the lower log2 δ bits are used as index bits, i.e., these bits determine a spe-
cific element within a cache line. The remaining upper bits are the set bits, and hence
determine the cache set which holds the corresponding T-table element. For instance, if
the cache line holds δ = 16 table elements, the lower log2 16 = 4 bits are used as index
bits and the 4 remaining upper bits determine the cache set. Given this information,
Equation 3 formalizes the computation of the memory-access patterns for a specific
key hypothesis h ∈ {0x00, . . . ,0xFF}, a specific disalignment d ∈ {0, . . . , δ − 1},
all possible plaintext byte values b ∈ {0x00, . . . ,0xFF}, and all possible cache sets
s ∈ {0, . . . , γ − 1}. Note that the set s refers to the relative set number of the T-table
Tj and does not represent the absolute number of a set within the cache.
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Fig. 3. Generated pattern for h = 0xF3, a dis-
alignment d = 0, and a cache-line size of 64
bytes

Fig. 4. Generated pattern for h = 0xF3, a dis-
alignment d = 1, and a cache-line size of 64
bytes

b ∈ {0x00, . . . ,0xFF}
s ∈ {0, ..., γ − 1}

patternh,d [b] [s] =

{
1, iif shift right( (b⊕ h) + d, log2 δ) == s

0, otherwise

(3)

Considering all possible disalignments and all possible key hypotheses we deduce that
there are δ · 256 patterns per cache set. For δ = 16 this results in 4096 possible patterns
per cache set. However, further analysis revealed that there exist pairs of hypothetical
key bytes and disalignments (h,d) that produce the same cache-access pattern within a
specific set. More specifically, an empirical analysis revealed that there are only 1376
unique patterns for one specific cache set, except for the first and the last cache set for
which there are 2736 and 2720 unique patterns3, respectively. Due to this observation
we store the patterns in a way, such that a pattern maps to a list of pairs (h,d) that gener-
ate this specific pattern. As can be seen in Equation 3 the computed patterns depend on
the key hypotheses and the possible disalignments. Thus, if the disalignment is known
in advance, the number of unique patterns reduces even further. Figure 3 and Figure 4
illustrate the plots of the computed patterns, as outlined in Equation 3, corresponding
to the hypothetical key byte h = 0xF3 and two different disalignments d ∈ {0, 1}. For
visualization purposes we computed the pattern for all cache sets a specific T-table Tj
can take. For the actual attack one might even recover the secret key by computing the
patterns for only one cache set. Figure 3 visualizes the generated pattern for an aligned
T-table, i.e., d = 0. In this case the T-table consumes exactly 16 cache sets and each
cache set holds 16 table elements. In contrast, Figure 4 visualizes a generated pattern
for a disaligned T-table, i.e., d = 1. The first cache set, i.e., cache set 0, holds only

3 The discrepancy of 2736− 2720 = 16 patterns between the first and the last cache set results
from the fact that in case of a disalignment d = 0 the last cache set does not contain any
T-table elements.
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15 table elements, indicated by a small gap at byte 0xFC. Consequently, 16 cache sets
are not enough in order to hold all table elements and hence 17 cache sets are con-
sumed by this T-table. Though, cache set 16 only holds the last table element with the
index si = 0xFF, indicated at byte 0x0C. An interesting property of the single element
within cache set 17 is that 0xFF⊕ 0x0C = 0xF3, since si ⊕ pi = ki, and thus yields
the correct key byte immediately. We will exploit this specific property later. Of course,
for other cache-line sizes this attack approach works analogously.

4.4 Extract Possible Key Candidates

In this step, we compare the pattern vector of a specific cache set s against all possible
pattern vectors computed for the same cache set s. If they match, we retrieve a list of
possible key candidates h that yield this specific pattern. If the access patterns are clearly
visible among the first set, an attacker might consider exploiting the access pattern of the
first cache set only. However, a possibly noisy pattern might hinder the extraction of the
pattern within specific cache sets. Thus, we extract the pattern of multiple cache sets and
match them against the precomputed patterns. The best results, i.e., where the largest
number of key bits is recovered, might be achieved by computing the intersection of
the returned key hypotheses h of all investigated cache sets. As already outlined before,
a noisy pattern might yield the wrong key candidate for a specific cache set and hence
computing the intersection of the returned key candidates might prevent a successful
key extraction. Thus, we count the number of cache sets that consider h as a possible
key candidate. The more cache sets report a possible key candidate h, the more likely it
might be the real key byte.

4.5 Brute-Force Key Search on the Remaining Key Space

In case the pattern-matching approach yields more than one key candidate per key byte
a subsequent brute-force key search with a known plaintext-ciphertext pair might reveal
the correct secret key.

5 Improvements of the Attack Concept

Further investigations of the extracted cache-access patterns revealed that the generated
patterns leak even more information, at least in case of disaligned T-tables. Recall that
the look-up indices into the T-tables within the first round are computed as si = pi⊕ki.
Hence, if the upper 8 − log2 δ bits of the encrypted plaintext byte pi equal the upper
8 − log2 δ bits of the secret key ki, the resulting look-up index goes straight into the
first cache set related to T-table Tj , with i ≡ j mod 4. Thus, the resulting index will
be visualized within cache set 0, at least in case where noise does not pollute these
cache accesses. Unfortunately, we cannot determine which plaintext byte pi equals the
unknown secret key byte ki, unless there is only one table element within cache set 0.
The crucial observation, that allows further reduction of the remaining key space is that
the T-table entry corresponding to the correct key byte is always within the largest block
of the first cache set as well as the largest block of the last cache set. We exploit this
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fact and extract the possible key candidates from the smaller one of these two, i.e., the
block that holds fewer possible key candidates. In case we extract the key candidates
from the last set we have to compute the XOR with 0xFF from each key candidate in
order to invert all bits.

The observation that the larger block always contains the correct key byte might be
clarified as follows. We denote α as the number of table elements within the first cache
set. Thus, in case of disaligned T-tables we always have α < δ. Starting at α = 1 and
increasing it continuously leads to a change within the lower log2 α bits of si, with the
remaining upper bits of si staying constant for a given α. Considering only the upper
8−dlog2 αe bits of these α look-up indices si ∈ {0, . . . , α− 1}, these elements form a
contiguous group. Now, consider the inverse operation of the key addition pi = si⊕ki,
with the key value ki being irrelevant for this explanation. Within such a group, which
is composed of the look-up indices si ∈ {0, . . . , α − 1} the XOR operation might flip
some bits. Nevertheless, the upper 8− dlog2 αe bits flip to the same state and the lower
blog2 αc bits form the largest group of 2blog2 αc indices, with 0 always being part of this
group. In case the plaintext byte pi equals the correct key byte ki the resulting look-up
index is pi ⊕ ki = 0. Thus, the correct key byte is always within the largest block.

Another possible enhancement of this attack might be to consider only key candi-
dates with the same disalignment within the pattern-matching phase. Since the T-tables
are usually located contiguously within the memory the disalignment should be the
same for all T-tables. Even in case the T-tables are not located contiguously within the
memory this approach might be considered for key bytes ki related to the same T-table
Tj , such that i ≡ j mod 4. Thus, for some runs this might even further reduce the
remaining key space.

6 Practical Application

Depending on the number of iterations R within the online phase, and the number of
exploited cache setsN , 16·256·3·N ·RAES encryptions are required in order to gather
the cache-access patterns for all possible key-byte indices 0 ≤ i < 16 and all possible
plaintext byte values 0 ≤ pi < 256 of the corresponding index. The factor 3 represents
the number of encryptions per plaintext, i.e., warm-up phase and two encryptions in
order to gather the measurement score. Considering the exploitation of all N = 17
cache sets on systems with a cache-line size of 64 bytes and R = 10 iterations this
yields a total number of 221 AES encryptions. In case of R = 150 iterations this yields
225 AES encryptions. As already outlined above, in case the number of exploited cache
sets is reduced the complexity of the attack in terms of AES encryptions decreases.
Excluding the brute-force key search, which might be done on a separate machine, the
whole attack can be performed within 40 to 80 seconds on a Cortex-A8 processor. If
only the online phase, i.e., gathering the cache-access patterns, is performed on the
mobile device under attack and the remaining steps are performed on a more powerful
machine, then this might be even reduced to a few seconds.

Gathering cache-access patterns has been observed to be successful already for
R = 10 runs per attacked key byte ki. Though the pattern might not be visible by
visual inspection immediately, the attack procedure outlined in this paper still might
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Table 1. Results of several access-driven attacks on the ARM Cortex-A8 processor

Pattern Pattern + Largest Block

R α Psuccess
Average Psuccess

Average
Remaining Bits Remaining Bits

20 10 90% 32 90% 18
20 14 80% 32 50% 25

150 1 100% 16 80% 9
150 2 100% 32 100% 16
150 3 100% 16 100% 8
150 4 100% 40 100% 40
150 5 100% 16 100% 0
150 6 100% 32 90% 21
150 7 100% 16 80% 6
150 8 80% 64 80% 48
150 9 100% 16 100% 0
150 10 100% 32 100% 21
150 11 100% 16 70% 5
150 12 100% 48 90% 37
150 13 100% 16 80% 4
150 14 100% 32 50% 20
150 15 100% 16 70% 7
150 16 100% 64 100% 64

recover the key successfully. In practice, one might consider exploiting the cache-access
patterns of only one specific cache set per key byte ki. Furthermore, we observed that
in case of disaligned T-tables the implemented enhancement, i.e., attacking the largest
block within the first or the last set, improves the result of this attack in terms of remain-
ing key bits. Table 1 summarizes the main results of our attack on the Google Nexus
S, which employs an ARM Cortex-A8 processor. Moreover, our test device operates
a fully-functioning Android 2.3.4 operating system. Pattern refers to the proposed at-
tack employing the pattern-matching approach and Pattern + Largest Block refers to
the proposed improvement of the attack. We observed that some disalignments, e.g.,
where only 5 or 9 elements are located within the first set, are highly vulnerable to the
presented attack. In this case our enhanced attack is able to recover the whole secret key
without a single brute-force encryption. On average we observe a success probability
of 87 % and less than 20 bits need to be searched exhaustively.

The presented results are based on the investigation of all odd cache sets, plus the
first and the last one for the proposed improvement of the attack. We chose the odd
cache sets in order to eliminate possible noise which might affect multiple contiguous
cache sets. Nevertheless, it might be possible that the investigation of other cache sets,
e.g., s ∈ {0, 1, 2, 3, 4, 16}, yields better results. Such investigations might be subject to
future work. Furthermore, Table 1 also shows that in case of a disalignment of 1 or δ−1
the key might not be revealed directly. Though, a visual inspection by a human being
usually yields the correct key byte directly, a programmatic detection of the correct key
byte within the first or the last set might be difficult due to reasons of noise.
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7 Conclusion

In this paper we demonstrated an attack based on the analysis of memory-access pat-
terns. According to our knowledge we are the first to perform an access-driven attack
on ARM Cortex-A series processors, which employ a random-replacement policy. We
have shown that given the memory-access patterns of disaligned T-tables it might be
possible to reveal the secret key without a single brute-force computation. In addition,
we emphasize that under the assumption that the cache-access pattern extraction of
specific cache sets works reliably, then computing the intersection of the returned key
candidates of the investigated cache sets might even leak more key bits. Concluding the
investigation of the proposed access-driven attack we heavily stress the importance of
aligned AES T-tables. Specifying the aligned attribute when declaring the T-table
ensures such a proper alignment. Though this does not prevent timing information from
being leaked it prevents an attacker from recovering the whole key immediately. In case
of properly aligned T-tables only half of the key bits can be recovered on systems with
a cache-line size of 64 bytes.

Future work related to the investigation of cache attacks on the ARM Cortex-A se-
ries might be to investigate the applicability of this attack without using the PMCCNTR
register, and thus removing the requirement for a rooted mobile device. Furthermore,
the utilization of other performance-monitor registers might be considered to launch
even more sophisticated attacks. For instance, employing these performance-monitor
registers might allow the implementation of trace-driven attacks purely in software.
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