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ABSTRACT
The procfs has been identified as a viable source of side-channel
information leaks on mobile devices. Starting with Android M (An-
droid 6), access to the procfs has been continuously restricted in
order to cope with these attacks. Yet, more recent papers demon-
strated that even if access to process-specific information is re-
stricted within the procfs, global statistics can still be exploited.
However, with state-of-the-art techniques, the search for procfs
information leaks requires a significant amount of manual work.
This makes an exhaustive analysis of existing and newly introduced
procfs resources in terms of information leaks impractical.

We introduce ProcHarvester, a systematic and fully automated
technique to assess procfs information leaks. ProcHarvester au-
tomatically triggers events of interest and later on applies machine
learning techniques to identify procfs information leaks. We demon-
strate the power of ProcHarvester by identifying information
leaks to infer app starts from a set of 100 apps with an accuracy of
96% on Android N (Android 7). Thereby, we outperform the most
accurate app inference attack by about 10 percentage points. We
also demonstrate the ease of applicability of ProcHarvester by
showing how to profile other events such as website launches as
well as keyboard gestures, and we identify the first procfs side
channels on Android O (Android 8). ProcHarvester advances
investigations of procfs information leaks to the next level and will
hopefully help to reduce the attack surface of side-channel attacks.
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1 INTRODUCTION
Side-channel attacks exploit information leaks of computing plat-
forms in order to learn sensitive information about users as well
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as their computing devices and the processed data. Especially side-
channel attacks on mobile devices have gained particular attention
and manifold attack possibilities have been suggested to extract
secret keys from cryptographic implementations, to bypass security
mechanisms, to infer keyboard input and user behavior, etc. Exist-
ing attacks range from, for example, sensor-based keyloggers [5,
6, 16, 22, 25], via micro-architectural attacks [15, 26, 29, 30, 37],
to attacks exploiting information leaks from the virtual file sys-
tem mounted under /proc/ (procfs) [14, 18, 24, 34]. Especially the
procfs has been identified as an apparently unlimited source of
information leaks. For example, procfs information has been used
to infer inter-keystroke timings [35], keyboard input [24], unlock
patterns [12], user identities and diseases [38], a user’s location [18],
visited websites [14, 27], and user interfaces [7, 12, 34].

A fundamental weakness of the procfs is the availability of
process-specific information, e.g., in /proc/uid_stat/<uid>/*,
and /proc/<pid>/*. As the majority of procfs side-channel attacks
exploit per-process information, access to procfs resources has been
continuously restricted since Android M (Android 6). Although
these restrictions mitigate attacks that exploit process-specific in-
formation (/proc/<pid>/*), newer attacks exploit global procfs
information that is still available. For instance, Simon et al. [24]
inferred swipe input on soft-keyboards by exploiting interrupt infor-
mation (/proc/interrupts) and the number of context switches
(/proc/stat). Diao et al. [12] inferred unlock patterns and running
applications (apps) via interrupt statistics. As of Android O (An-
droid 8) access to global interrupt statistics has also been removed.

This trend illustrates the arms race between OS designers aiming
to reduce the attack surface and attackers aiming to find new infor-
mation leaks. Furthermore, as claimed in many of these papers, the
identified information leaks represent just the tip of the iceberg and
more information leaks are yet to be discovered. Therefore, we aim
for a systematic analysis of procfs information leaks. We introduce
ProcHarvester,1 a tool that automatically profiles procfs informa-
tion for events of interest. More specifically, ProcHarvester finds
correlations between events of interest and procfs information.

We demonstrate the applicability of ProcHarvester by auto-
matically identifying new as well as existing information leaks. As
a proof of concept, we analyze app inference attacks. ProcHar-
vester automatically launches applications of interest and simulta-
neously samples procfs resources. In this setting, ProcHarvester
outputs a list of procfs files and properties that can be exploited in
side-channel attacks to infer app launches. We compare our results
to existing app inference attacks and show that the side channels
found by ProcHarvester outperform existing attacks. The identi-
fied information leaks allow to infer app starts from a set of 100 apps
with an accuracy of 96% on Android 7, which increases the most

1We responsibly disclosed our findings to Google. The ProcHarvester framework is
available at: https://github.com/IAIK/ProcHarvester.
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accurate attack so far [12] by about 10 percentage points. Besides,
we demonstrate how ProcHarvester can be used to systematically
search for information leaks that allow to infer visited websites, as
well as keyboard gestures on soft-keyboards. These examples are by
no means exhaustive, but illustrate the power of ProcHarvester.
Contributions. Our contributions are as follows:
(1) We introduce ProcHarvester, a fully automated technique

to find procfs leaks, even on already hardened Android sys-
tems, and identify exploitable side-channel leaks on Android
N (Android 7) as well as the new Android O (Android 8).

(2) We demonstrate the generic methodology of ProcHarvester
by automatically detecting procfs information leaks that allow
to infer sensitive events such as app starts, website launches,
and soft-keyboard gestures.

(3) We reveal new attack surfaces within the procfs that allow to
precisely infer application launches and thereby outperform
the most accurate state-of-the-art attacks.

Outline. In Section 2, we discuss the procfs and related work. In
Section 3, we discuss the principle of automatically profiling the
procfs with ProcHarvester. In Section 4, we demonstrate how
to profile the procfs for information leaks that allow to infer app
starts and we evaluate the identified procfs leaks. In Section 5
and Section 6, we show how to use ProcHarvester to profile
website launches and keyboard gestures. In Section 7, we discuss
countermeasures, how ProcHarvester helps to reduce the attack
surface of procfs side-channel attacks as well as limitations and the
performance of our framework. Finally, we conclude in Section 8.

2 BACKGROUND AND RELATEDWORK
2.1 The Linux procfs
The process information file system (procfs) is a virtual file system
mounted under /proc/ on Linux-based operating systems, includ-
ing Android. As the name suggests, it provides information about
processes running on the system. For example, information about
shared memory is available via /proc/<pid>/statm for a given
process ID (<pid>), and network traffic statistics are available via
/proc/uid_stat/<uid>/[tcp_rcv|tcp_snd] for a given user ID
(<uid>). Since Android apps are assigned a user ID (uid) during
the installation, and a process ID (pid) identifies an executed pro-
cess, these resources provide per-application information. Besides
per-application information, the procfs also provides global infor-
mation which is considered innocuous, e.g., statistical information
about processed interrupts on the system via /proc/interrupts.
In addition to the procfs, Linux-based operating systems provide in-
formation about the hardware and the device via the sysfs (/sys/).
procfs Restrictions. Since Android 4.3, SELinux [4] further re-
stricts apps by means of mandatory access control (MAC), which
allows more fine-grained access control policies than discretionary
access control (DAC). In general, third-party apps are associated
with the label untrusted_app, and system apps are associated with
the label system_app. Since Android M (Android 6),2 apps running
as untrusted_app have been restricted to access only /proc/ en-
tries of other apps runningwith label untrusted_app. Startingwith

2android-review.googlesource.com/#/c/105337/.

Android N (Android 7)3 the procfs is mounted with hidepid=2, i.e.,
processes cannot access /proc/<pid>/* for a pid other than their
own. In Android O (Android 8) the procfs is restricted even further,
e.g., /proc/interrupts is not available anymore.

2.2 Related Work
Side-channel attacks on mobile devices exploit shared resources,
e.g., sensors [5, 6, 19, 22, 25, 33] or microarchitectural compo-
nents [15, 26, 29, 30, 37], to infer sensitive information such as
keystrokes and keyboard input as well as cryptographic keys. Other
well-known attacks include the exploitation of sensor information
to infer a user’s location and traveling patterns [13, 21], to finger-
print devices [9–11, 39], and to eavesdrop conversations [17]. As
the set of information leaks on mobile devices is quite diverse, we
refer to [28] for a survey of side-channel attacks on mobile devices.

In this work, we focus on the exploitation of procfs interfaces.
We discuss side-channel attacks that exploit procfs interfaces below.
Keylogging and Unlock Pattern Attacks. Zhang andWang [35]
published one of the first papers exploiting the procfs. They ob-
served that the stack pointer (ESP) in /proc/<pid>/stat allows to
monitor inter-keystroke timings. Simon et al. [24] inferred swipe
input on soft-keyboards running on Android ≥ 4.4 by exploiting
global interrupt statistics available via /proc/interrupts. Further-
more, Diao et al. [12] presented an attack to infer unlock patterns
by also exploiting touchscreen interrupt statistics on Android 5.1.1.
Inference of User Information. Jana and Shmatikov [14] ex-
ploited the memory footprint (/proc/<pid>/statm) and the num-
ber of context switches (/proc/<pid>/status) of the browser to in-
fer visited websites. Zhou et al. [38] inferred diseases by monitoring
traffic statistics (/proc/uid_stat/<uid>/[tcp_rcv|tcp_snd]) of
applications, and Spreitzer et al. [27] inferred visited websites based
on the traffic statistics of the browser.

Michalevsky et al. [18] observed that the power consumption
(/sys/class/power_supply/battery/*) correlates with the cel-
lular signal strength, which allows to infer a user’s location.
Application and Activity Inference. Chen et al. [7] proposed
a user interface (UI) inference attack that exploits the size of the
sharedmemory of specific apps (/proc/<pid>/statm). Since shared
memory is used for the communication between an app and the
process that updates the frame buffer, the size of the shared memory
indicates activity transitions. Subsequently, they rely on the CPU
utilization time (/proc/<pid>/stat), the size of transmitted net-
work packets (/proc/uid_stat/<uid>/tcp_snd), and destination
IP addresses (proc/net/tcp6) to infer the activity. They relied on
Android 4.2 and considered 7 different apps. Similarly, Yan et al. [34]
inferred apps and activities by exploiting the power consumption
(/sys/class/power_supply/battery/*). They were able to dis-
tinguish 3 different apps as well as 3 activities within the Amazon
app on Android 4.4. Recently, Diao et al. [12] exploited the interrupt
counter of the display sub-system (MDSS) (/proc/interrupts) to
infer running apps. They collected training data for 100 apps and
randomly selected 10 apps for their attack. For these 10 apps they
report a success rate of 87% on Android 5.1.

3android-review.googlesource.com/#/c/181345/.
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Table 1: Devices used for the practical experiments.

Device Operating system
One Plus 3T Android 7.1.1 (LineageOS)
Sony Xperia Z5 Android 7.0 (Stock ROM)
Emulator (Nexus 5X) Android 8.0 (Developer preview)

H Desktop Suite

ML>_
(1) Trigger event

(2) Log (3) Fetch data

(4) Analysis

Figure 1: Basic design and work flow of ProcHarvester.

As discussed in Section 2.1, access to /proc/<pid>/ and /sys/
has been restricted inAndroid 7.4 Therefore, more recent attacks [12,
24] exploit global procfs information, e.g., /proc/interrupts, but
Android 8 also restricts access to global interrupt information.

2.3 Test Devices
For the practical experiments, we rely on the Android devices as
shown in Table 1. We explicitly focus on Android 7 as it already
restricts many of the previously exploited information leaks and in-
vestigations on Android 7 are quite scarce. Furthermore, we provide
first insights about side-channel leaks on the new Android 8.

3 THE PROCHARVESTER FRAMEWORK
ProcHarvester enables a systematic analysis of information leaks
by automatically profiling procfs behavior for events of interest.
Considering the attacks discussed above, ProcHarvester triggers
specific events—e.g., app starts, website launches, keystrokes, etc.—
and scans the procfs for information leaks that allow to infer the
corresponding events later on.
Template Attacks. Our approach is based on template attacks,
where templates for events of interest are modeled. Later, one ob-
serves the leaking information and infers the events by means of
these templates. The appealing benefit of this methodology is that
information leaks can be analyzed without background knowledge
of the underlying effects. Thus, this approach is perfectly suitable
for an automatic analysis of procfs leaks.

Based on template attacks, ProcHarvester finds correlations
between triggered events and procfs information, which can be
exploited for side-channel attacks. Figure 1 depicts the design of
ProcHarvester consisting of an Android app (H) and a Desktop
Suite. The Android app systematically logs procfs information. The
Desktop Suite consists of a tool to control the Android app as well
as the device via the Android Debug Bridge (ADB) [2], e.g., to
trigger events of interest, and a machine learning framework (ML)
to analyze the gathered data in terms of information leaks.
4code.google.com/p/android/issues/detail?id=208085.

ProcHarvester works in four phases: exploration phase, pro-
filing phase, analysis phase, and attack phase. The work flow of
ProcHarvester is as follows.

(1) Trigger Event: The Desktop Suite triggers events via the ADB
connection. Besides triggering events via ADB capabilities, the
framework can trigger events by other means as well, e.g., via
the MonkeyRunner [3], programmatically via the Android app
(H) itself, and events can also be triggered by a human being.

(2) Log: The Android app (H) identifies potential information leaks
from procfs resources in the exploration phase. Irrespective of
the actual approach to trigger events, the Android application
continuously monitors and logs the procfs resources in the
subsequent profiling phase, i.e., while events are triggered.

(3) Fetch Data: After the events have been triggered, the log files
are fetched to the Desktop Suite for the subsequent analysis.

(4) Analysis: In the analysis phase, the gathered time series are
analyzed for possible correlations in order to identify informa-
tion leaks that allow to infer the triggered events. The output is
a list of resources that can be exploited in side-channel attacks,
i.e., in the attack phase, to infer the triggered events.

3.1 ProcHarvester Android App
ProcHarvester runs as an IntentService in the background and
samples the procfs. Experiments on our test devices revealed a sam-
pling frequency of 200Hz for logging about 20 procfs resources at
the same time. For a systematic and possibly exhaustive analysis of
procfs leaks, resources can be logged during subsequent executions.
Triggering Events. Events can be triggered within the ProcHar-
vester Android app directly—either programmatically or by a hu-
man being—or via the ADB shell. Naturally, when programmatically
triggering events within the Android app, dedicated permissions
might be required during the analysis phase, but no permissions
are required for the exploitation of the identified procfs leaks.

The Android app implements the CommandReceiveActivity to
handle various Intents, which are used to execute commands via the
ADB shell. More specifically, commands and optional arguments
can be passed to this activity via Extra Data supported by the Intent.
Identification of Target Resources. As we are interested in pub-
licly readable files within the procfs, we identify such files based on
file permissions. Files that seem to be publicly readable due to the
DAC mechanism, but are further restricted due to the MAC mecha-
nism (cf. SELinux since Android 4.3) are filtered out in the profiling
phase, as they cannot be accessed by zero-permission apps.
Exploration. Before the profiling starts, the exploration phase au-
tomatically identifies possible information leaks in the targeted
procfs files. The app parses numerical values in the correspond-
ing files and keeps track of the line indices and column indices.
During this exploration phase we also trigger events of interest to
induce possible information leaks. A resource is considered in the
subsequent profiling phase if it changes with a sufficiently high
frequency, depending on a configurable threshold. The threshold
represents an optimization parameter and restricts the search space
to information leaks that are non-static. For an exploration phase of
6.5 seconds, we fixed the threshold to 10, i.e., we focus on resources
that change with a frequency of more than 10

6.5 ≈ 1.5Hz. Hence, we
follow amore conservative approach than existing (manual) attacks,

https://code.google.com/p/android/issues/detail?id=208085
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Training data (time series)
Resource 1 Resource 2 · · · Resource n

DTW DTW DTW DTW

L1 = { } L2 = { } ... Ln = { }

P1 P2 ... Pn

Figure 2: Strategy in single-resource mode.

which consider sampling frequencies of 10–1000Hz [12, 18, 38], i.e.,
resources that change more frequently. Nevertheless, the threshold
could also be set to 1, resulting in a more expensive profiling phase.
Profiling. After the exploration phase, the profiling phase starts. In
this phase, time series of previously identified candidate side chan-
nels (based on the line indices and column indices) are logged to
separate files while events of interest are triggered simultaneously.

3.2 ProcHarvester Desktop Suite
The Desktop Suite consists of two parts: A tool to send ADB com-
mands and an analysis tool. This allows to automatically trigger
events of interest on the device—in case the events are not trig-
gered directly on the smartphone—and also to transfer the gathered
information to the Desktop Suite for the subsequent analysis.
Triggering Events and Sending ADB Commands. Currently,
ProcHarvester supports triggering app launches, website launches,
and tap and swipe actions. However, ProcHarvester can easily
be extended to be applicable to other events as well. Besides trig-
gering events on the device, commands allow to start and stop the
logging service, and to communicate the corresponding label of
the event to the ProcHarvester Android app in order to label the
gathered data for the analysis. All events of interest are triggered
in a randomized order to simulate a more realistic usage scenario.
Machine Learning Methodology. The Desktop Suite also ana-
lyzes the gathered information for information leaks. Therefore, it
relies on the machine learning framework scikit-learn [23]. In a pre-
processing step, we normalize time series by subtracting the mean.
Afterwards, we rely on dynamic time warping (DTW)5 to identify
similarities between gathered time series of procfs resources for the
triggered events. Given two time series X = (x1, . . . ,xn ) and Y =
(y1, . . . ,ym ) of (possibly) different lengths, DTW compares these
two time series by finding a warping path with minimal distance.
For classification purposes, a time series X is matched against other
time series Yi to find a class i , such that i = argminDTW(X ,Yi ).
We implicitly assume that two time series originate from the same
target label (class) if they yield a low distance to each other based
on DTW. The appealing benefit of DTW is that possibly misaligned
time series can be compared (cf. [20]) without background knowl-
edge about information leaks and without human interaction.

Although supervised classifiers based on features manually iden-
tified by an expert would probably yield even better results than our
approach, we focus on a fully automated technique that does not
require any human interaction. Hence, we also investigated the use
5https://github.com/honeyext/cdtw.

Training data (time series)
Resource 1 Resource 2 · · · Resource n

DTW DTW DTW DTW

L1 = { } L2 = { } ... Ln = { }

Majority voting

P

Figure 3: Strategy in multi-resource mode.

of automatic feature extraction, by using tsfresh [8], in order to train
common supervised learning algorithms such as KNN classifiers
and multi-class SVMs. However, we found the accuracy of informa-
tion leaks identified through DTW to be significantly higher than
with supervised learning algorithms based on automatic feature ex-
traction. This shows that common supervised learning algorithms
cannot easily be adapted for a fully automated approach.
Analysis Modes. The analysis tool can be used in two modes,
namely single-resource mode and multi-resource mode.
(1) In single-resource mode, we evaluate the accuracy of inferring

events based on a single resource at a time. Figure 2 depicts
the basic principle. The following k-nearest-neighbor approach
is used to classify time series. We determine the top k labels
(Li ) of the k events in the training data with the smallest DTW
distances to the time series to be classified, where the training
data consists of multiple time series for each event of interest
and procfs resource. Based on this list of k labels, the majority
of the reported labels is used to predict the most likely one (Pi ).

(2) In multi-resource mode, multiple resources are evaluated simul-
taneously and the results of all resources are combined by a
majority voting to evaluate the overall performance of a specific
combination of information leaks. Figure 3 depicts this strategy.
The top k labels of each single resource are collected in a list (Li )
and the majority of the reported labels for all these resources
then determines (predicts) the event. Without prior knowledge
on the exploited information and considering possibly noisy
side channels, majority voting allows us to combine multiple
resources and to determine the most likely event. Hence, the
multi-resource mode automatically evaluates possible attacks
that exploit multiple resources at the same time.
In an actual attack one might extract more specialized features

from the identified information leaks, which might lead to even
higher accuracies. We, however, focus on a general approach to
identify information leaks automatically and do not rely on special-
ized features in order to launch fully-fledged attacks. Nevertheless,
the generic approach of DTW allows us to automatically identify
information leaks and to launch sophisticated generic side-channel
attacks based on the identified information leaks.
Summary ofMethodology.An important advantage of ProcHar-
vester is that a thorough understanding of the actual information
leak is not necessary to detect it. Our proposed methodology iden-
tifies information leaks in a fully automated fashion as we establish

https://github.com/honeyext/cdtw
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Figure 4: Information leaks (nr_mapped, pgfault, and kgsl3do) for Gmail and Youtube.

templates—for events of interest—which are then used to identify in-
formation leaks. Due to this automatic approach, ProcHarvester
allows to quickly analyze possible attacks on different Android
versions, e.g., AOSP as well as vendor-specific ones. In this work,
we focus on events of interest that are already known, i.e., already
known attacks, to demonstrate the power of ProcHarvester.

4 APPLICATION INFERENCE
To demonstrate the applicability of ProcHarvester, we analyze
the procfs during app starts. The learned information allows us to
perform application inference attacks from an unprivileged app by
monitoring the automatically identified procfs resources.
Problem Description. Currently executed apps should be kept
secret as this information enables targeted attacks, e.g., phishing
attacks [7] that steal login credentials. Thus, Android prevents
third-party apps from learning currently executed applications. Up
to Android L (Android 5), the GET_TASKS permission allowed to ob-
tain running apps via ActivityManager.getRunningTasks() and
ActivityManager.getRecentTasks(). In Android L (Android 5),
GET_TASKS has been replacedwith the permission REAL_GET_TASKS,
which is not granted to non-system apps anymore.

4.1 Profiling
We instructed ProcHarvester to profile app starts, as shown in
Listing 1. Although ProcHarvester uses internal methods to han-
dle ADB commands as well as to start and stop the logging app, we

provide them here for the sake of clarity and to illustrate the basic
communication between the Desktop Suite and the Android app.

Listing 1: Profiling app starts with ProcHarvester.
# Repea t f o r a l l apps ( < package >)
adb s h e l l am s t a r t \

- n com . h a r v e s t e r . CommandRece iveAct iv i ty \
- - e s CMD TRIGGER_EVENT - - es ARG <package >

adb s h e l l monkey - p <package > \
- c andro id . i n t e n t . c a t e go ry . LAUNCHER 1

s l e e p 4 . 5 # l o gg i ng s t o p s a f t e r 4 seconds
adb s h e l l am f o r c e - s t op <package >

4.2 Analysis and Evaluation on Android 7
4.2.1 Information Leaks. In the analysis phase, ProcHarvester

identified several procfs resources that allow to infer app starts. The
evaluation presented in this section is based on experiments with
the One Plus 3T. Experiments on the Xperia Z5 revealed almost
identical results and, hence, have been omitted.

Figure 4 illustrates three identified information leaks for Gmail,
and Youtube, respectively. We observe that multiple starts of the
same app lead to similar time series and that time series for different
apps can be distinguished. These plots also illustrate that relying
on DTW to identify correlations yields reliable results regarding
information leaks, since DTW aims to identify similarities between
sequences that vary in time or speed (cf. [20]). Therefore, these
time series serve as templates for the subsequent evaluation.

Table 2 provides an excerpt of procfs leaks that allow to infer app
starts on Android 7. The accuracy has been evaluated for the 100
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Table 2: Excerpt of identified information leaks for app in-
ference on Android 7. Accuracy evaluated for 100 apps.

procfs file Property Accuracy
/proc/vmstat nr_mapped 82.2%
/proc/vmstat pgfault 73.3%
/proc/interrupts kgsl3do 71.5%
/proc/vmstat nr_anon_pages 71.3%
/proc/interrupts arch_timer 70.1%
/proc/interrupts MDSS 67.6%
/proc/interrupts Rescheduling interrupts 62.9%
/proc/vmstat nr_dirty_threshold 62.2%
/proc/vmstat nr_shmem 58.9%
/proc/vmstat nr_free_pages 49.1%
/proc/interrupts Single function call interrupts 48.3%
/proc/interrupts dwc3 47.2%
/proc/net/sockstat Sockets used 74.1%
/proc/net/dev wlan0: Receive bytes 73.8%
/proc/net/dev wlan0: Transmit bytes 68.4%
/proc/sys/fs/
inode-state

nr_inodes (column 0) 65.0%

/proc/meminfo VmallocUsed 55.9%
/proc/sys/fs/dentry-statenr_dentry (column 0) 54.1%
/proc/pagetypeinfo zone DMA, type Unmovable 39.7%
/proc/schedstat cpux (column 8: Time spent waiting to run) 37.8%

apps listed in Appendix A. For ProcHarvester the exact meaning
of these properties does not matter. The idea is to report properties
for which a correlation between time series could be observed since
these properties allow to identify the corresponding event later on.
Nevertheless, we indicate named properties within the procfs files
as property_name and in case of unnamed properties we provide
the column number (starting at 0) within the procfs file.

As there are multiple columns in /proc/interrupts (one for
each CPU) and we do not know on what CPU the targeted event is
executed, we simply sum all interrupt counters from the individual
CPUs. The information leaks resulting from the Mobile Display
Sub-System (MDSS) have already been exploited by Diao et al. [12] to
perform app inference attacks. However, we still report it here since
ProcHarvester automatically identified MDSS as an information
leak. To the best of our knowledge, the other information leaks
identified by ProcHarvester have not been reported so far.

4.2.2 Adversary Model and Evaluation. Based on the observed
information leaks, we evaluate the performance of fingerprinting
app starts. Therefore, we assume an adversary model where a user
installed a malicious app on her device. As the app does not require
any permission, the user will not notice anything suspicious during
the installation. We rely on an analysis phase where the adversary
gathers the identified procfs resources for applications of interest
to establish the application fingerprint database, i.e., the templates
for specific apps of interest. This analysis phase, i.e., the gathering
of templates, can be done on the targeted device or on a device
controlled by the adversary. During the attack phase, the malicious
application monitors the previously identified information leaks
and exploits this information to infer application launches. For our
evaluation, the profiling phase and the attack phase have been per-
formed on the same device, as also done in the studies we compare
our results to [12, 34].
Evaluation. For the subsequent evaluation we establish a database
of fingerprints for the 100 apps listed in Appendix A. We collected

Table 3: App inference attacks on Android 7 based on iden-
tified information leaks for application cold starts.

Attack # Apps Accuracy
App cold starts 100 96%
App resumes 20 86%
Mixed (cold starts and app resumes) 20 90%
Manual cold starts (by human being) 20 98%

10 samples, i.e., 10 time series for the procfs leaks in the upper part
of Table 2, per app and considered the following four scenarios.

App cold starts: By combining the identified information leaks
by means of majority voting (in the multi-resource mode), we
achieve an average classification rate of 96% based on 8-fold
cross validation for all 100 apps. We significantly outperform
the most accurate attack by Diao et al. [12], who report an accu-
racy of 87% for 10 randomly chosen apps out of 100 apps. The
detailed results for app cold starts can be found in Appendix A.

App resumes: We also evaluated the accuracy of inferring app re-
sumes with the identified information leaks for app cold starts.
Although a dedicated profiling phase will most likely identify
further information leaks that allow to infer app resumes more
accurately, we achieve an average classification rate of 86% for
20 applications, selected randomly out of the 100 applications.
This shows that even if the attacker has only templates for app
cold starts, app resumes can still be monitored with a high accu-
racy. The detailed classification results for application resumes
can be found in Appendix A.

Mixed: As seen in the previous two cases, we are able to iden-
tify app cold starts as well as app resumes by relying on the
templates for app cold starts. We evaluated the combination
of these two cases, i.e., app cold starts and app resumes, by
randomly selecting 20 applications out of the 100 applications
and achieved an average classification rate of 90% based on
k-fold cross validation. The detailed classification results for
app cold starts and app resumes can be found in Appendix A.

Manual cold starts: Since we gathered the training data by trig-
gering the app starts automatically via the ADB shell, we also
verified the identified side channels manually. Therefore, we
launched 20 apps, each 10 times, by manually tapping the ap-
plication icon with a finger while monitoring the identified
resources in the background. During these manual application
starts, the dwc3 interrupt (in /proc/interrupts) did not leak
any information on manual app starts. Instead, we found that
the dwc3 interrupt is caused by the USB interface, representing
a new side channel that allows to spy on USB connections.
The remaining information leaks presented in Table 2 were
also exploitable during manual app starts. This indicates that
most of the identified information leaks do not differ between
programmatically triggered events and manually (by a human
being) triggered events, which strengthens the approach of au-
tomatically identifying information leaks. The detailed results
for manual application cold starts can be found in Appendix A.

Table 3 summarizes our investigations. All accuracies have been
averaged by means of k-fold cross validation.
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Table 4: Excerpt of identified information leaks for app in-
ference on Android 8. Accuracy evaluated for 20 apps.

procfs file Property Accuracy
/proc/net/sockstat sockets: used 86.3%
/proc/net/xt_qtaguid/
iface_stat_all

eth0: tx_packets (column 9) 77.2%

/proc/net/xt_quota/eth0 eth0: interface quota 76.9%
/proc/net/protocols UNIX: sockets 76.3%
/proc/net/xt_qtaguid/
iface_stat_fmt

eth0: total_skb_tx_packets 76.3%

/proc/meminfo AnonPages 76.3%
/proc/meminfo Active(anon) 75.9%
/proc/meminfo MemFree 70.9%
/proc/meminfo Mapped 62.5%
/proc/meminfo Shmem 55.0%

Table 5: Comparison of app inference attacks. ✓ and ✗ indi-
cate whether the attackworks on a specific Android version.

Work procfs information # Apps Accuracy Android 7 Android 8
Yan et al. [34] /sys/.../battery 3 100% ✗ ✗

Diao et al. [12] /proc/interrupts 10/100 87% ✓ ✗

Ours
/proc/interrupts,
/proc/vmstat
(Table 2)

100/100 96% ✓ ✗

Ours /proc/meminfo
(Table 4) 20/100 87% ✓ ✓

4.3 Analysis and Evaluation on Android 8
Similar to the evaluation on Android 7, ProcHarvester identified
information leaks that allow to infer app starts on Android 8. The
profiling and evaluation are performed exactly as on Android 7.

Table 4 provides an excerpt of the information leaks and the
corresponding accuracies evaluated for app starts on Android 8.
We observe that on Android 8 /proc/vmstat is not available any-
more. However, most of the information that has been published in
/proc/vmstat is still available in /proc/meminfo. Thus, the infor-
mation leaks have not been closed, but instead the information is
available at a different location within the procfs. Since the experi-
ments on Android 8 have been carried out with an emulator, some
of the procfs leaks are related to the Ethernet network interface
(eth0) instead of theWi-Fi network interface (wlan0). Nevertheless,
running ProcHarvester on a real device will yield similar results.

Combining the information leaks in the lower part of Table 4
yields an average classification rate of 87% based on k-fold cross
validation. Appendix B depicts the detailed results for all 20 apps.

4.4 Comparison of Attacks
Table 5 compares our results to related work. Access to /sys/ has
been restricted in Android 7 and, hence, the information leak ex-
ploited by Yan et al. [34] does not work anymore. Compared to
the previously most accurate attack by Diao et al. [12], ProcHar-
vester automatically identified information leaks that allow us
to significantly outperform their attack. Besides, Diao et al. [12]
report an accuracy of 87% for 10 randomly chosen apps out of 100
apps, whereas we are able to infer 96% of all 100 apps. In addition,
the attack by Diao et al. [12] does not work on Android 8 since
/proc/interrupts is not available anymore.

We stress that the main intention of this work is to demonstrate
the strength of ProcHarvester in identifying information leaks
automatically. Hence, we also do not focus on a stealthy attack
considering, e.g., the battery consumption of the Android app. Nev-
ertheless, with our fully automated attacks, we outperform the
most accurate attack to date on Android 7 and we present the first
procfs-based side-channel attack on Android 8.

5 WEBSITE INFERENCE
We also instructed ProcHarvester to investigate procfs leaks that
can be exploited for website fingerprinting attacks [14, 27].
Problem Description. A user’s browsing behavior reveals sensi-
tive information such as sexual orientation, diseases, etc. Therefore,
up to Android M (Android 6) it has been protected by means of the
READ_HISTORY_BOOKMARKS permission, and starting with Android
M access has been removed entirely [1].

5.1 Profiling
In order to investigate information leaks in the procfs that allow
to infer visited websites, we instructed ProcHarvester to profile
website launches via the Chrome browser, as shown in Listing 2.

Listing 2: Profiling websites with ProcHarvester.
# Repea t f o r a l l web s i t e s ( <URL>)
adb s h e l l am s t a r t \

- n com . h a r v e s t e r . CommandRece iveAct iv i ty \
- - e s CMD TRIGGER_EVENT - - es ARG <URL>

adb s h e l l am s t a r t \
- a " and ro id . i n t e n t . a c t i o n . VIEW" - d <URL>

s l e e p 4 . 5 # l o gg i ng s t o p s a f t e r 4 seconds
# K i l l the browser
adb s h e l l am f o r c e - s t op com . andro id . chrome

5.2 Analysis and Evaluation on Android 7
5.2.1 Information Leaks. ProcHarvester identified several re-

sources in the procfs that allow to fingerprint websites and, thus,
to infer a user’s browsing behavior. Again, the evaluation is based
on experiments with the One Plus 3T. Experiments on the Xperia
Z5 revealed almost identical results and, hence, have been omitted.

Figure 5 depicts three identified procfs leaks for facebook.com,
and wikipedia.org, respectively. Again, we observe that multiple
visits to the same website lead to similar time series and that time
series for different websites can be distinguished. Since we use
DTW as a similarity measure, misalignments are entirely negli-
gible. Specifically, the time series for wikipedia.org have visually
observable time offsets, but DTW correctly detects the similarity.

Table 6 provides an excerpt of the identified information leaks
that allow to fingerprint websites. Most information leaks are re-
lated to statistics collected about the number of packets received
and transmitted as well as the number of bytes received and trans-
mitted. Furthermore, the number of pages used for shared memory
also leaks information about visited websites. Nevertheless, we do
not aim to interpret the automatically identified information leaks
and ProcHarvester reports information leaks irrespective of the
actual information that leaks and without background knowledge.
Hence, also redundant procfs resources, such as IpExt: InOctets
and wlan0: Receive bytes, have been identified.We evaluated the
detection accuracy for the top 20 websites according to alexa.com.

facebook.com
wikipedia.org
wikipedia.org
alexa.com
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Figure 5: Information leaks (IpExt: InNoECTPkts, IPExt: InOctets, and IPExt: OutOctets) for facebook.com and wikipedia.org.

Table 6: Excerpt of identified information leaks for website
fingerprinting on Android 7. Accuracy based on 20 websites.

procfs file Property Accuracy
/proc/net/netstat IpExt: InNoECTPkts 82.5%
/proc/net/netstat IpExt: InOctets 81.9%
/proc/net/dev wlan0: Receive packets 81.9%
/proc/net/dev wlan0: Received bytes 78.8%
/proc/net/dev wlan0: Transmit packets 77.5%
/proc/net/netstat IpExt: OutOctets 73.8%
/proc/net/dev wlan0: Transmit bytes 71.9%
/proc/vmstat nr_shmem 70.6%
/proc/vmstat nr_mapped 64.4%
/proc/net/sockstat sockets: used 60.0%

5.2.2 Adversary Model and Evaluation. Similar to the website
fingerprinting evaluation we assume that a zero-permission app
monitors the identified procfs leaks in the background and exploits
these information leaks to infer a user’s browsing behavior.
Evaluation. For this proof of concept we established a database of
website fingerprints (templates) for the top 20 websites according
to alexa.com. We collected 8 samples, i.e., 8 time series for the
identified information leaks in Table 6, per website. We combined
the identified procfs leaks by means of multi-resource evaluation.

For all gathered samples (time series), ProcHarvester infers
visited websites with a high probability. The detailed results for
each of the 20 websites are shown in Table 7. Overall, we achieve an
average classification rate of 94% based on k-fold cross validation.

Table 7: Classification rates for website fingerprinting by
combining the identified information leaks on Android 7.
Accuracy based on 8 samples per website.

Website Precision Recall
www.360.cn 78% 88%
www.amazon.com 100% 100%
www.baidu.com 100% 100%
www.facebook.com 100% 100%
www.google.com 100% 100%
www.imgur.com 100% 100%
www.instagram.com 88% 88%
www.jd.com 88% 88%
www.linkedin.com 100% 88%
www.live.com 100% 88%
www.netflix.com 100% 88%
www.qq.com 78% 88%
www.reddit.com 100% 100%
www.sina.com.cn 100% 75%
www.sohu.com 78% 88%
www.taobao.com 88% 88%
www.tmall.com 89% 100%
www.vk.com 89% 100%
www.wikipedia.org 100% 100%
www.yahoo.com 100% 100%
Average 94% 93%

facebook.com
wikipedia.org
alexa.com
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Table 8: Excerpt of identified information leaks for website
fingerprinting on Android 8. Accuracy based on 20 websites.

procfs file Property Accuracy
/proc/net/dev eth0: Receive packets 80.6%
/proc/net/xt_qtaguid/
iface_stat_all

eth0: rx_bytes (column 6) 80.0%

/proc/net/netstat IpExt: InOctets 79.4%
/proc/net/sockstat TCP: mem 78.8%
/proc/net/snmp Tcp: InSegs 78.8%
/proc/net/dev eth0: Transmit errs 77.5%
/proc/net/dev eth0: Receive errs 77.5%
/proc/net/protocols TCP: memory 75.6%
/proc/net/netstat IpExt: InNoECTPkts 75.6%
/proc/net/protocols TCPv6: memory 75.6%
/proc/net/snmp Ip: InReceives 75.6%
/proc/net/xt_qtaguid/
iface_stat_all

eth0: tx_bytes (column 8) 75.0%

/proc/net/dev eth0: Transmit packets 75.0%
/proc/net/snmp Tcp: OutSegs 75.0%
/proc/net/xt_qtaguid/
iface_stat_all

eth0: rx_packets (column 7) 75.0%

/proc/net/snmp Ip: InDelivers 74.4%
/proc/net/netstat IpExt: OutOctets 73.8%
/proc/net/snmp Ip: OutRequests 72.5%
/proc/meminfo Mapped 55.6%
/proc/net/sockstat sockets: used 55.0%
/proc/meminfo Shmem 45.0%
/proc/meminfo MemFree 42.5%
/proc/meminfo Active(anon) 36.3%
/proc/meminfo AnonPages 35.6%
/proc/net/protocols UNIX: sockets 26.9%
/proc/meminfo Committed_AS 13.1%

5.3 Analysis and Evaluation on Android 8
Similar to the evaluation on Android 7, ProcHarvester automati-
cally identified information leaks that allow to fingerprint websites
on Android 8. The profiling and evaluation are performed exactly
as on Android 7. Table 8 provides an excerpt of the information
leaks and the corresponding accuracies evaluated for 20 websites
on Android 8. By combining the identified information leaks from
Table 8 we achieve an average classification rate of 87% based on
k-fold cross validation. Table 9 depicts the detailed results for all 20
websites.

6 KEYBOARD GESTURE INFERENCE
We now demonstrate the applicability of ProcHarvester to auto-
matically profile events such as tap, touch, long press, as well as
short and long swipe actions on the soft keyboard.
ProblemDescription. Information about user input gestures (e.g.,
the length of swipe actions, whether it was a short touch action or a
long touch action, etc.) enable powerful follow-up attacks (cf. [24]).
Therefore, the Android system prevents applications from directly
learning such sensitive information.

6.1 Profiling
In order to profile the procfs for information leaks that reveal sen-
sitive user input activity, we simulate touch actions and touch
gestures through ADB commands (input swipe and input tap).

Table 9: Classification rates for website fingerprinting by
combining the identified information leaks on Android 8.
Accuracy based on 8 samples per website.

Website Precision Recall
www.360.cn 89% 100%
www.amazon.com 80% 100%
www.baidu.com 86% 75%
www.facebook.com 100% 100%
www.google.com 89% 100%
www.imgur.com 70% 88%
www.instagram.com 80% 100%
www.jd.com 71% 62%
www.linkedin.com 80% 100%
www.live.com 89% 100%
www.netflix.com 88% 88%
www.qq.com 100% 25%
www.reddit.com 100% 100%
www.sina.com.cn 100% 75%
www.sohu.com 62% 62%
www.taobao.com 100% 100%
www.tmall.com 100% 88%
www.vk.com 100% 50%
www.wikipedia.org 80% 100%
www.yahoo.com 80% 100%
Average 87% 86%

Note that specific interrupts such as the screen interrupt are only
triggered for real touchscreen interactions, which will lead to ad-
ditional information leaks. However, a complete investigation of
information leaks would require the events to be triggered by phys-
ically touching the screen, e.g., by a human being, and a fully-
fledged attack evaluation is out of scope for this paper. We consider
the following events in order to demonstrate the applicability of
ProcHarvester:

(1) Short swipe over three soft keys (75ms)
(2) Long swipe over nine soft keys (300ms)
(3) Tap character, i.e., keystroke on “a”
(4) Long press character, i.e., long press on “a”
(5) Tap shift key

6.2 Information Leaks on Android 7
6.2.1 Information Leaks. Similar to the experiments in the pre-

vious sections, the ProcHarvester Desktop Suite automatically
identified several procfs resources that allow to detect the profiled
user input events. The evaluation is based on results obtained on
the One Plus 3T and the AOSP keyboard.

Figure 6 illustrates plots of the MDSS resource for three user input
events. Although the traces for “tap character” and “tap shift” look
quite similar at first glance, the y-axes have a different scale, which
means that these events can be automatically distinguished based
on the identified information leak. Table 10 provides an excerpt
of the identified information leaks that allow to infer user input
actions.
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Figure 6: Information leak (MDSS) for “tap character”, “tap shift”, and “long swipe”.

Table 10: Excerpt of identified information leaks for key-
board gestures on Android 7. Accuracy based on 5 gestures.

procfs file Property Accuracy
/proc/interrupts MDSS 95.0%
/proc/interrupts kgsl-3do 86.3%
/proc/vmstat nr_mapped 85.0%
/proc/interrupts Rescheduling interrupts 77.5%

Table 11: Classification rates for screen gestures by combin-
ing the identified information leaks on Android 7. Accuracy
based on 10 samples per gesture.

Keyboard gesture Precision Recall
Short swipe 100% 100%
Long swipe 100% 100%
Tap character 91% 100%
Long press character 100% 100%
Tap shift 100% 90%
Average 98% 98%

6.2.2 Adversary Model and Evaluation. Similar to the previous
adversary models, we assume that the attacker tries to fingerprint
user input events. Hence, the malicious application monitors the
identified information leaks in order to infer user input events by
means of a template attack.
Evaluation. We established a database of screen gesture finger-
prints for the above described gestures by collecting 10 samples per
gesture. By combining the identified information leaks presented
in Table 10, we achieve an average accuracy of 98% based on k-fold
cross validation. The detailed results for each of the five gestures
can be found in Table 11.

6.3 Analysis and Evaluation on Android 8
Similar to the evaluation on Android 7, ProcHarvester automat-
ically identified information leaks that allow to infer keyboard
gestures on Android 8. The profiling and evaluation are performed
exactly as on Android 7. Table 12 provides an excerpt of the informa-
tion leaks and the corresponding accuracies evaluated for different

Table 12: Excerpt of identified information leaks for key-
board gestures on Android 8. Accuracy based on 5 gestures.

procfs file Property Accuracy
/proc/meminfo Active 77.5%
/proc/meminfo Active(anon) 76.3%
/proc/meminfo AnonPages 73.8%
/proc/meminfo Committed_AS 72.5%
/proc/meminfo HighFree 72.5%
/proc/meminfo MemFree 72.5%
/proc/meminfo MemAvailable 70.0%
/proc/meminfo LowFree 63.8%
/proc/meminfo VmallocUsed 62.5%
/proc/meminfo Mapped 60.0%
/proc/meminfo PageTables 57.5%
/proc/meminfo KernelStack 50.0%
/proc/meminfo Active(file) 45.0%
/proc/meminfo Cached 42.5%
/proc/meminfo Dirty 38.8%

keyboard gestures on Android 8. Although interrupt information
(/proc/interrupts) and especially the MDSS interrupt information
is not available anymore on Android 8, ProcHarvester identified
many information leaks within /proc/meminfo that allow to infer
keyboard gestures. Our evaluation shows that the overall accuracy
for inferring keyboard gestures decreases, but there are still many
information leaks left on Android 8.

By combining the identified information leaks from Table 12 we
achieve an average classification rate of 73% based on k-fold cross
validation. Table 13 depicts the detailed results for all keyboard
gestures. The side channels automatically identified by ProcHar-
vester are the only known side channels on Android 8.

7 DISCUSSION
We now discuss countermeasures against procfs side-channel at-
tacks and how ProcHarvester can be used to automatically iden-
tify procfs leaks before Android updates are shipped to the user.
Furthermore, we discuss current limitations as well as the perfor-
mance of ProcHarvester.
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Table 13: Classification rates for screen gestures by combin-
ing the identified information leaks on Android 8. Accuracy
based on 10 samples per gesture.

Keyboard gesture Precision Recall
Short swipe 100% 90%
Long swipe 91% 100%
Tap character 33% 10%
Long press character 91% 100%
Tap shift 50% 80%
Average 73% 76%

7.1 Countermeasures
App Guardian. Zhang et al. [36] proposed a countermeasure to
prevent procfs-based side-channel attacks. The main observation is
that the attack app needs to run side-by-side with the victim app
on the targeted device in order to collect the required side-channel
information. Therefore, they developed a third-party application
(App Guardian) that should prevent such side-channel attacks. The
idea is to detect ongoing side-channel attacks against specific ap-
plications by observing, for example, the CPU usage of currently
executing applications. Thereby, App Guardian assumes that if the
CPU usage of an application increases while an application to be
protected is executed, this application might perform a side-channel
attack. If such a suspicious application is detected, it will be stopped.

App Guardian [31] has been developed in 2015 and it relies
on getRunningTasks() as well as /proc/<pid>/statm to detect
ongoing side-channel attacks. Both resources are not available any-
more since Android N (Android 7) and, thus, in its current form
App Guardian does not protect against side-channel attacks on re-
cent Android versions. Similarly, Diao et al. [12] observed that App
Guardian does not prevent attacks exploiting /proc/interrupts
on Android 5.1.1. Hence, App Guardian must inevitably be updated
for more recent Android versions, which might become a tedious
task required for each new Android version.
Restrict Access to procfs Resources. Although Android has al-
ready been hardened, our investigations show that more rigorous
restrictions for procfs interfaces are essential. The attack surface
has already been reduced by continuously restricting access to per-
process information (e.g., /proc/<pid>/) starting from Android M
(Android 6) and also by restricting access to global interrupt infor-
mation (/proc/interrupts) in Android O (Android 8). However,
by relying on ProcHarvester we identified several new informa-
tion leaks that are still publicly available, as they are still considered
harmless. ProcHarvester allows to investigate such information
leaks more systematically, which is especially interesting for OS de-
signers and OS developers. For instance, although the new Android
O (Android 8) restricts access to /proc/vmstat, ProcHarvester
automatically revealed that the same information is now available
in /proc/meminfo. Hence, ProcHarvester constitutes a tool for
automatically identifying information leaks and is essential for
the elimination of procfs information leaks in upcoming Android
versions before they are released.
Evaluation of Countermeasures. ProcHarvester can also be
used to automatically evaluate newly proposed countermeasures.
Especially if countermeasures do not restrict access to a resource but

try to protect it, for example, by means of noise injection [32] or by
releasing more coarse-grained information [38], ProcHarvester
allows developers to automatically evaluate the effectiveness of a
proposed countermeasure at a larger scale.

7.2 Limitations
Among many new procfs leaks that allow to infer application
launches, visited websites, and keyboard gestures, ProcHarvester
also successfully identified already known information leaks auto-
matically. For example, profiling app starts with ProcHarvester
revealed the information leaks already exploited by Diao et al. [12]
in order to infer application launches. This demonstrates the effec-
tiveness of the proposed ProcHarvester framework. In addition,
the generic design of ProcHarvester can be adapted and extended
to support the profiling of other events of interest as well. We also
demonstrated that information leaks identified by ProcHarvester
can be successfully exploited in subsequent side-channel attacks.

A crucial point, however, is that if ProcHarvester does not
identify information leaks, it does not necessarily mean that the
system is secure and does not leak any information through the
procfs. By relying on the generic approach of dynamic timewarping,
we are able to systematically analyze procfs resources automatically
but this does not guarantee that an attacker cannot extract more
targeted and specialized features that can be exploited.

Besides, ProcHarvester currently only considers procfs re-
sources that are frequently updated during the profiling of events.
This means that it does not consider static information published
via the procfs. For example, Chen et al. [7] mentioned that app starts
can also be inferred by monitoring /proc/net/tcp6, which con-
tains destination IP addresses. This information, however, is static
during the profiling and is currently ignored by ProcHarvester.

7.3 Performance
ProcHarvester represents an analysis tool that allows identifying
side-channel information leaks automatically. Thus, we neither
optimized the Android app in terms of a stealthy attack that aims to
reduce the battery consumption, nor did we optimize the analysis
in the backend. The DTW-based approach scales quadratically with
the number of events since each trace is compared to all other traces
in order to determine the inference accuracy.

For example, on an Intel Broadwell 2 GHz with 8GB of RAM,
the analysis takes 2–3 minutes for a set of 20 apps and 14 procfs re-
sources. For a set of 100 apps and 14 procfs resources, this approach
takes 49 minutes. Again, we did not optimize the DTW implementa-
tion as we did not intend to implement a high-performance attack,
but to propose an analysis tool that allows identifying information
leaks that can be exploited to launch side-channel attacks.

8 CONCLUSION
In this paper we introduced ProcHarvester, a technique to scan
the entire procfs for information leaks in a fully automated fashion.
Based on the identified information leaks for application starts, we
demonstrated an attack that significantly outperforms state-of-the-
art application inference attacks. Furthermore, we demonstrated
how ProcHarvester automatically identifies information leaks for
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other events of interest such as visited websites and keyboard ges-
tures. Our investigations show that the threat of procfs information
leaks is omnipresent, and we identified several new side-channel
leaks on Android 7 as well as the only procfs information leaks on
the recently released Android 8.

Most importantly, ProcHarvester advances the investigation of
procfs information leaks. The information gained by using ProcHar-
vester assists OS designers and OS developers in detecting possible
side-channel attacks resulting from information published via the
procfs. Based on these insights, we hope that future operating sys-
tems will be less susceptible to procfs-based attacks.
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Table 14 shows the 100 apps used in the evaluation of app cold start
detection in Section 4. Precision and recall are determined based on
10 samples for each application. For comparison reasons, we aimed
to rely on the set of 100 apps used by Diao et al. [12]. However,
only 65 of these apps have been available at the time of writing this
paper and, thus, we replaced the remaining 35 apps with common
apps from the Google Play store.

Table 14: Applications used for app inference evaluation.
Evaluation is based on 10 samples per app.

Package name Precision Recall
air.com.hoimi.MathxMath 90% 90%
air.com.hypah.io.slither 100% 100%
at.DiTronic.androidgroup.randomgallery 100% 90%
bbc.mobile.news.ww 100% 80%
cmb.pb 90% 90%
cn.etouch.ecalendar.longshi2 90% 90%
com.Kingdee.Express 91% 100%
com.Slack 100% 80%
com.aastocks.dzh 100% 100%
com.airbnb.android 100% 90%
com.ajnsnewmedia.kitchenstories 100% 90%
com.amazon.mShop.android.shopping 77% 100%
com.android.chrome 91% 100%
com.android.vending 100% 100%
com.antutu.ABenchMark 100% 100%
com.baidu.baidutranslate 100% 80%
com.baidu.searchbox 100% 100%
com.bankofamerica.cashpromobile 100% 100%
com.booking 91% 100%
com.chase.sig.android 100% 90%
com.citrix.saas.gotowebinar 77% 100%
com.cnn.mobile.android.phone 100% 100%
com.coolmobilesolution.fastscannerfree 100% 100%
com.csst.ecdict 83% 100%
com.dewmobile.kuaiya.play 91% 100%
com.douban.frodo 100% 100%
com.dropbox.android 100% 90%
com.ebay.mobile 100% 100%
com.facebook.katana 77% 100%
com.facebook.orca 100% 80%
com.facebook.pages.app 100% 80%
com.facebook.work 100% 100%
com.google.android.apps.docs 83% 100%
com.google.android.apps.photos 100% 90%
com.google.android.deskclock 100% 100%
com.google.android.gm 100% 100%
com.google.android.keep 100% 100%
com.google.android.music 100% 100%
com.google.android.street 100% 100%
com.google.android.youtube 100% 100%
com.groupon.redemption 90% 90%
com.healthagen.iTriage 100% 90%
com.hket.android.ctjobs 86% 60%

Continued on next column

Continued from previous column
Package name Precision Recall
com.hse28.hse28_2 100% 90%
com.htsu.hsbcpersonalbanking 100% 100%
com.imdb.mobile 100% 100%
com.indeed.android.jobsearch 100% 100%
com.instagram.android 100% 80%
com.intsig.BCRLite 100% 100%
com.intsig.camscanner 100% 100%
com.isis_papyrus.raiffeisen_pay_eyewdg 91% 100%
com.jobmarket.android 91% 100%
com.jobsdb 100% 90%
com.king.candycrushsaga 100% 100%
com.kpmoney.android 91% 100%
com.lenovo.anyshare.gps 100% 100%
com.linkedin.android.jobs.jobseeker 91% 100%
com.magisto 100% 100%
com.malangstudio.alarmmon 100% 100%
com.medscape.android 100% 100%
com.microsoft.hyperlapsemobile 100% 100%
com.microsoft.rdc.android 91% 100%
com.miniclip.agar.io 100% 100%
com.mmg.theoverlander 90% 90%
com.mobisystems.office 91% 100%
com.money.on 100% 100%
com.mt.mtxx.mtxx 100% 100%
com.mtel.androidbea 100% 100%
com.mysugr.android.companion 100% 100%
com.netflix.mediaclient 100% 100%
com.nianticlabs.pokemongo 100% 100%
com.nuthon.centaline 100% 100%
com.openrice.android 100% 90%
com.paypal.android.p2pmobile 91% 100%
com.priceline.android.negotiator 91% 100%
com.roidapp.photogrid 100% 100%
com.sankuai.movie 100% 100%
com.scb.breezebanking.hk 100% 100%
com.skype.raider 100% 100%
com.smartwho.SmartAllCurrencyConverter 91% 100%
com.smule.singandroid 100% 60%
com.snapchat.android 91% 100%
com.sometimeswefly.littlealchemy 100% 100%
com.spotify.music 100% 100%
com.surpax.ledflashlight.panel 100% 100%
com.ted.android 91% 100%
com.tinder 100% 100%
com.tripadvisor.tripadvisor 100% 90%
com.twitter.android 100% 80%
com.whatsapp 71% 100%
com.zhihu.android 100% 100%
ctrip.android.view 100% 100%
io.appsoluteright.hkexChecker 100% 100%
io.silvrr.silvrrwallet.hk 100% 100%
jp.united.app.kanahei.money 83% 100%
org.telegram.messenger 89% 80%
sina.mobile.tianqitong 100% 100%
tools.bmirechner 100% 100%
tv.danmaku.bili 100% 100%
tw.com.off.hkradio 100% 90%
Average 96% 96%
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Table 15 shows the 20 apps used in the evaluation of app resumes
in Section 4. Precision and recall are determined based on 10 samples
for each app. These 20 apps have been randomly selected from the
set of 100 apps in Table 14. Note that this set of 20 apps has been
generated once and re-used for the evaluations on Android 7.

Table 15: Applications used for app resume inference evalu-
ation. Evaluation is based on 10 samples per app.

Package name Precision Recall
at.DiTronic.androidgroup.randomgallery 100% 90%
com.android.chrome 100% 90%
com.android.vending 55% 60%
com.dropbox.android 64% 70%
com.facebook.orca 100% 90%
com.google.android.apps.photos 73% 80%
com.google.android.gm 70% 70%
com.google.android.music 33% 20%
com.instagram.android 100% 100%
com.isis_papyrus.raiffeisen_pay_eyewdg 75% 90%
com.lenovo.anyshare.gps 100% 100%
com.paypal.android.p2pmobile 83% 100%
com.scb.breezebanking.hk 100% 100%
com.snapchat.android 83% 100%
com.sometimeswefly.littlealchemy 100% 100%
com.ted.android 80% 80%
com.whatsapp 100% 80%
io.silvrr.silvrrwallet.hk 100% 100%
org.telegram.messenger 100% 100%
tv.danmaku.bili 100% 100%
Average 86% 86%

Table 16 shows the 20 apps used in the mixed app inference
evaluation of cold starts and resumes in Section 4. Precision and
recall are determined based on 16 samples for each application, i.e.,
8 samples for cold starts and 8 samples for resumes.

Table 16: Applications used for mixed app inference evalu-
ation (cold starts and resumes). Evaluation is based on 16
samples per app.

Package name Precision Recall
at.DiTronic.androidgroup.randomgallery 100% 75%
com.android.chrome 94% 100%
com.android.vending 69% 56%
com.dropbox.android 80% 75%
com.facebook.orca 93% 81%
com.google.android.apps.photos 86% 75%
com.google.android.gm 92% 75%
com.google.android.music 85% 69%
com.isis_papyrus.raiffeisen_pay_eyewdg 79% 94%
com.lenovo.anyshare.gps 76% 100%

Continued on next column

Continued from previous column
Package name Precision Recall
com.paypal.android.p2pmobile 94% 100%
com.scb.breezebanking.hk 100% 100%
com.snapchat.android 100% 94%
com.sometimeswefly.littlealchemy 100% 100%
com.ted.android 100% 100%
com.whatsapp 83% 94%
io.silvrr.silvrrwallet.hk 80% 100%
org.cyanogenmod.snap 100% 100%
org.telegram.messenger 84% 100%
tv.danmaku.bili 100% 100%
Average 90% 89%

Table 17 shows the 20 apps used in the manual evaluation of cold
start detection in Section 4. Precision and recall are determined
based on 10 samples for each application.

Table 17: Applications used for app inference evaluation
triggered manually (w/o ADB). Evaluation is based on 10
samples per app.

Package name Precision Recall
at.DiTronic.androidgroup.randomgallery 100% 100%
com.android.chrome 100% 80%
com.android.vending 100% 100%
com.dropbox.android 100% 100%
com.facebook.orca 83% 100%
com.google.android.apps.photos 100% 100%
com.google.android.gm 100% 100%
com.google.android.music 100% 100%
com.instagram.android 100% 90%
com.isis_papyrus.raiffeisen_pay_eyewdg 91% 100%
com.lenovo.anyshare.gps 100% 100%
com.paypal.android.p2pmobile 100% 100%
com.scb.breezebanking.hk 100% 100%
com.snapchat.android 100% 100%
com.sometimeswefly.littlealchemy 100% 100%
com.ted.android 100% 100%
com.whatsapp 100% 90%
io.silvrr.silvrrwallet.hk 100% 100%
org.telegram.messenger 91% 100%
tv.danmaku.bili 100% 100%
Average 98% 98%
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Table 18 shows the 20 apps used for the evaluation of cold start
detection on Android 8. Precision and recall are determined based
on 10 samples for each application.

Table 18: Applications used for app inference evaluation on
Android 8. Evaluation is based on 10 samples per app.

Package name Precision Recall
air.com.hypah.io.slither 100% 100%
at.DiTronic.androidgroup.randomgallery 100% 100%
com.Slack 90% 90%
com.android.chrome 100% 90%
com.android.vending 75% 90%
com.bankofamerica.cashpromobile 100% 100%
com.dropbox.android 100% 80%
com.ebay.mobile 86% 60%
com.google.android.apps.docs 100% 100%
com.google.android.apps.photos 100% 80%
com.google.android.gm 82% 90%
com.google.android.keep 75% 30%
com.google.android.music 90% 90%
com.scb.breezebanking.hk 100% 100%
com.sololearn.cplusplus 71% 100%
com.sometimeswefly.littlealchemy 91% 100%
com.ted.android.conference 56% 90%
com.twitter.android 100% 100%
com.whatsapp 75% 60%
org.catrobat.catroid 50% 60%
Average 87% 85%


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The Linux procfs
	2.2 Related Work
	2.3 Test Devices

	3 The ProcHarvester Framework
	3.1 ProcHarvester Android App
	3.2 ProcHarvester Desktop Suite

	4 Application Inference
	4.1 Profiling
	4.2 Analysis and Evaluation on Android 7
	4.3 Analysis and Evaluation on Android 8
	4.4 Comparison of Attacks

	5 Website Inference
	5.1 Profiling
	5.2 Analysis and Evaluation on Android 7
	5.3 Analysis and Evaluation on Android 8

	6 Keyboard Gesture Inference
	6.1 Profiling
	6.2 Information Leaks on Android 7
	6.3 Analysis and Evaluation on Android 8

	7 Discussion
	7.1 Countermeasures
	7.2 Limitations
	7.3 Performance

	8 Conclusion
	Acknowledgments
	References
	A Considered Android Applications on Android 7
	B Considered Android Applications on Android 8

